K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

\(\left|x+2012\right|+\left|x-2014\right|=\left|x+2012\right|+\left|2014-x\right|\)
Ta có: \(\left|x+2012\right|+\left|2014-x\right|\ge\left|x+2012+2014-x\right|\)
\(\Rightarrow\left|x+2012\right|+\left|2014-x\right|\ge4026\ge2016\)
Ta có đpcm

NV
10 tháng 8 2020

\(x^4+4x^3+6x^2+4x+1\)

\(=\left(x^4+2x^3+x^2\right)+\left(2x^3+4x^2+2x\right)+\left(x^2+2x+1\right)\)

\(=x^2\left(x^2+2x+1\right)+2x\left(x^2+2x+1\right)+\left(x^2+2x+1\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+1\right)=\left(x+1\right)^4\ge0;\forall x\in R\)

NV
16 tháng 5 2019

Ủa câu này nãy làm rồi mà bạn chưa hiểu hay sao?

\(VT=cos^22x+sin^22x-2sin2x.cos2x+2sin3x.cosx-2sinx.cosx-sin^{2x}\)

Ở đây ta lần lượt có:

\(cos^22x+sin^22x=1\)

\(2sin2x.cos2x=sin4x\)

\(2sin3x.cosx=sin4x+sin2x\)

\(2sinx.cosx=sin2x\)

Ghép lại sẽ được:

\(VT=1-sin4x+sin4x+sin2x-sin2x-sin^2x=1-sin^2x=cos^2x\)

16 tháng 5 2019

nhưng đáp án bằng 0 bạn ơi!

21 tháng 4 2018

\(x^2-x+1=x^2-\frac{1}{2}\cdot2x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)

20 tháng 4 2018

\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6>0\forall x\)

20 tháng 4 2018

có thể trình bày cả bài ra đc k ạ

NV
15 tháng 12 2020

Với \(x=\dfrac{1}{2}\in R\Rightarrow x^2=\dfrac{1}{4}< x=\dfrac{1}{2}\)

Do đó mệnh đề đã cho sai

Mệnh đề phủ định:

\("\exists x\in R,x^2< x"\)

7 tháng 10 2018

      \(2x^2+y^2+10x-4y\ge2xy-13\) (1)

\(\Leftrightarrow2x^2+y^2+10x-4y-2xy+13\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+6x+9\ge0\)

\(\Rightarrow\left(x-y\right)^2+2.\left(x-y\right).2+2^2+x^2+2.x.3+3^2\ge0\)

\(\Rightarrow\left(x-y+2\right)^2+\left(x+3\right)^2\ge0\)(2)

Ta thấy (2) luôn đúng mà \(\left(2\right)\Leftrightarrow\left(1\right)\)nên (1) luôn đúng

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}x-y+2=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)

NV
13 tháng 6 2020

\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right).cosx-1\)

\(=2sin^2\left(2x-\frac{\pi}{4}\right)+4cos2x.sinx.cosx-1\)

\(=1-cos\left(4x-\frac{\pi}{2}\right)+2sin2x.cos2x-1\)

\(=-cos\left(\frac{\pi}{2}-4x\right)+sin4x\)

\(=-sin4x+sin4x=0\)