\(\ge\) 0 \(\forall\)x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6>0\forall x\)

20 tháng 4 2018

có thể trình bày cả bài ra đc k ạ

16 tháng 8 2018

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)

21 tháng 10 2017

- Câu a): *y^2 , sai đề y2.

21 tháng 10 2017

Câu b:

Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)

\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)

\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)

\((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)

\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)

\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)

21 tháng 4 2018

\(x^2-x+1=x^2-\frac{1}{2}\cdot2x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)

12 tháng 4 2018

xét hiệu

\(\dfrac{x+y}{xy}-\dfrac{4}{\left(x+y\right)}\)

<=> \(\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}-\dfrac{4xy}{xy\left(x+y\right)}\)

<=> (x+y)2 -4xy

<=> x2+y2+2xy-4xy

<=> x2+y2-2xy

<=> (x-y)2 ≥ 0 (luôn đúng )

=> đpcm

12 tháng 4 2018

cảm ơn bạn nhiều yeu

10 tháng 9 2018

\(\left|x+2012\right|+\left|x-2014\right|=\left|x+2012\right|+\left|2014-x\right|\)
Ta có: \(\left|x+2012\right|+\left|2014-x\right|\ge\left|x+2012+2014-x\right|\)
\(\Rightarrow\left|x+2012\right|+\left|2014-x\right|\ge4026\ge2016\)
Ta có đpcm

19 tháng 8 2018

1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)

\(=\left(x-1\right)^2+4\)

Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)

Vậy Min A=4 tại x=1

b,\(B=2x^2-6x=2\left(x^2-3x\right)\)

\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)

(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)

Bài 2

a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)

\(=-\left(x^2-2.x.3+3^2-9-3\right)\)

\(=-\left[\left(x-3\right)^2-12\right]\)

\(=-\left(x-3\right)^2+12\)

Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)

\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)

Vậy Max A =12 tại x=3

b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)

Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)

c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)

\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)

Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))

Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)

19 tháng 8 2018

Mình làm tiếp phần của Dũng Nguyễn nha.

b) \(4x-x^2-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2.x.2+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\)

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Vậy \(4x-x^2-5< 0\) với mọi x

c) \(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

Vậy \(x^2-x+1>0\) với mọi x

d) \(-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x^2-2x+1+3\right)\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-1\right)^2-3\le-3\)

\(\Rightarrow-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi x

17 tháng 12 2018
https://i.imgur.com/iuuCL8H.jpg