Cho tứ giác ABCD.Chứng minh nếu AD+AC < BD+BC thì AD < BD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PT
1
CM
16 tháng 8 2019
Vẽ AH ⊥ (BCD) tại H, ta có CD ⊥ AH và vì CD ⊥ AB ta suy ra CD ⊥ BH. Tương tự vì BD ⊥ AC ta suy ra BD ⊥ CH
Vậy H là trực tâm của tam giác BCD tức là DH ⊥ BC
Vì AH ⊥ BC nên ta suy ra BC ⊥ AD
Cách khác: Trước hết ta hãy chứng minh hệ thức:
với bốn điểm A, B, C, D bất kì.
Thực vậy , ta có:
Do đó nếu AB ⊥ CD nghĩa là
Từ hệ thức (4) ta suy ra
,
do đó AD ⊥ BC.
NT
1
15 tháng 8 2016
- Áp dụng bđt trong tam giác , ta có :
AB < OB + OA ; BC < OB + OC ; CD < OC + OD ; AD < OA + OD
=> AB +BC + CD + AD < 2(OA + OB + OC + OD)
=> (AB+BC+CD+AD)/2<AC+BD (1)
- AB + BC > AC ; BC + CD > BD ; CD + AD > AC ; AB + AD > BD
=> 2(AB + BC + CD + DA) > 2(AC + BD)
=> AB + BC + CD + DA > AC + BD (2)
Từ (1) và (2) suy ra đpcm
Bạn kham khảo tại link:
cho tứ giác ABCD. chứng minh rằng AC+BD>AB+CD? | Yahoo Hỏi & Đáp
Hello ơi,khác đề nha bạn