Cho hình thang ABCD có hai đáy là AB và CD . Gọi E , F , K lần lượt là trung điểm của các cạnh AD , BC ,BD .
a ) Chứng minh EK//AB , KF//AB và E , F , K thẳng hàng
b) Gọi I là giao điểm EF và AC . Chứng minh : IA = IC
c ) Chứng minh : IE = KF và KE = IF
d ) Cho biết AB = 6cm , CD = 10cm . Tính IK.
Các bạn giúp minh nha . gấp nhé làm hết và vẽ hình nha
a, \(\Delta ABD\) có: \(DE=EA\left(gt\right)\), \(DK=KB\left(gt\right)\Rightarrow\)EK là đường trung bình của \(\Delta ABD\Rightarrow\)\(EK \parallel AB\)(1), \(EK=\dfrac{1}{2}AB\)
Chứng minh tương tự với \(\Delta BDC\) ta có: \(KF \parallel DC\), \(KF=\dfrac{1}{2}DC\)
Ta có: \(KF \parallel DC (cmt), AB \parallel DC (gt)\)\(\Rightarrow KF \parallel AB\)(2)
Điểm K chỉ có một và chỉ có một đường thẳng song song với AB nên từ (1) và (2) và theo tiên đề Ơ-clit về đường thẳng song song \(\Rightarrow\)E, K, F thẳng hàng
b, \(\Delta ABC\) có: \(IF \parallel AB (cmt)\), \(BF=FC\left(gt\right)\Rightarrow AI=IC\)
c, \(\Delta ADC\) có: \(AE=ED\left(gt\right),AI=IC\left(cmt\right)\Rightarrow\)IE là đường trung bình của \(\Delta ADC\Rightarrow IE=\dfrac{1}{2}DC\) mà \(KF=\dfrac{1}{2}DC\left(cmt\right)\Rightarrow IE=KF\)
\(\Delta ABC\) có: \(BF=FC\left(gt\right),AI=IC\left(cmt\right)\Rightarrow\)IF là đường trung bình của \(\Delta ABC\Rightarrow IF=\dfrac{1}{2}AB\) mà \(EK=\dfrac{1}{2}AB\Rightarrow IF=EK\)
d, Ta có: \(EK=\dfrac{1}{2}AB\left(cmt\right)=\dfrac{1}{2}.6=3\left(cm\right)\)
\(IE=\dfrac{1}{2}DC\left(cmt\right)=\dfrac{1}{2}.10=5\left(cm\right)\)
Ta có: \(EK+KI=IE\)
hay \(3+KI=5\)
\(KI=2\left(cm\right)\)
Mysterious Persontran nguyen bao quanKhôi Bùi Dũng NguyễnDƯƠNG PHAN KHÁNH DƯƠNGAki TsukiMashiro ShiinaThiên HànPhùng Khánh LinhĐoreamonNhiên An TrầnNguyễn Huy TúAkai HarumaNguyễn Thanh Hằngsoyeon_Tiểubàng giảiPhương AnVõ Đông Anh TuấnLightning Farron