TÌM n THUỘC N ĐỂ:
a) n + 4 CHIA HẾT n
b) 3n + 7 chia hết cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
\(\Leftrightarrow3n+9-2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-2;-4;-1;-5\right\}\)
mà n là số tự nhiên
nên \(n\in\varnothing\)
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
a)\(n+4⋮n\)
Vì \(n⋮n\)
Nên \(4⋮n\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Vậy \(n\in\left\{1;2;4\right\}\)
b) \(3n+7⋮n\)
Vì \(3n⋮n\)
Nên \(7⋮n\Rightarrow n\in\left(7\right)=\left\{1;7\right\}\)
Vậy \(n\in\left\{1;7\right\}\)
c) \(27-5n⋮n\)\(\left(0< n\le5\right)\)
Ta có : \(5n⋮n\Rightarrow\)phép chia này có số dư bằng 0
Đây là công thức chia hết nè mk chỉ bổ sung thôi chứ trong bài làm bạn đừng ghi thế này nha :
\(a⋮n;b⋮n\left(a\ge b;a\le b\right)\)thì \(a-b;b-a⋮n\)có nghĩa là cùng số dư nha bạn
Mà ta có 5n chia hết cho n
Nên \(27⋮n\Rightarrow n\inƯ\left(27\right)=\left\{1;3;9;27\right\}\)
Mà vì đầu đề bài điều kiện ta cho là \(0< n\le5\)
Nên \(n\in\left\{1;3\right\}\)
n + 4 chia hết hco n
=> 4 chia hết cho n
=> n thuộc {1;2;4}
3n + 7 chia hết cho n
=> 7 chia hết cho n
=> n thuộc {1;7}
n + 6 chia hết ho n + 2
n + 2 + 4 chia hết cho n + 2
4 chia hết cho n + 2
U(4) = {1;2;4}
n + 2 = 1
=> n = -1
n + 2 = 2
=> n = 0
n + 2 = 4
=> n = 2
Vậy n thuộc {0;2}
Mọi số n đều chia hết cho N