K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2015

Tử số :   !__!__!__!__!

Mẫu số : !__!__!__!__!__!__!__!

Tử số ban đầu là :

               165 : ( 7 + 4 ) x 4 = 60

Mẫu số ban đầu là :

         165 - 60 = 105

Vậy ps đó = 60/105

**** mjk đầu tiên

1 tháng 8 2015

Tổng số phần bằng nhau là:

3+5=8 (phần)

Tử số khi chưa rút gọn là:

48:8*3=18

Mẫu số khi chưa rút gọn là:

48:8*5=30

Đáp số:Tử số khi chưa rút gọn là 18

             Mẫu số khi chưa rút gọn là 30

Vậy phân số bằng phân số 3/5 khi chưa rút gọn mà có tổng của tử số và mẫu số khi chưa rút gọn là 18/30

30 tháng 7 2015

Hatsune Miku ơi 48 : (3+5) x 5 = 48 : 8 x 5 = 6 x 5 = 30 chứ 

27 tháng 7 2020

Viết rõ đề bài ra đc không ạ

27 tháng 7 2020

đấy là phân số

10 tháng 11 2021

Tham khảo:

Điều kiện xác định của phương trình là tập hợp các giá trị của ẩn làm cho tất cả các mẫu trong phương trình đều khác 0. Điều kiện xác định của phương trình viết tắt là ĐKXĐ.

10 tháng 11 2021

tại sao :))??

29 tháng 3 2019

Biến đổi được:  x = 2 ( a + b ) 3 ( a 3 − b 3 ) ; y = 9 ( a − b ) 2 4 ( a + b )

⇒ P = x . y = 2 ( a + b ) 3 ( a 3 − b 3 ) . 9 ( a − b ) 2 4 ( a + b ) = 3 ( a − b ) 2 ( a 2 + ab + b 2 )

13 tháng 6 2018

\(A=\left(3m+4n-5p\right)-\left(3m-4n-5p\right)\)

\(\Rightarrow3m+4n-5p-3m+4n+5p=A\)

\(\Rightarrow A=\left(3m-3m\right)+\left(4n+4n\right)-\left(5p-5p\right)\)

\(\Rightarrow A=0+8n+0=8n\)

a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)

b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)

c: Để A=3/4 thì 4x-8=3x+6

=>x=14

d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{3;1;4;0;6;-2\right\}\)

29 tháng 10 2023

a) Thay x = 81 vào A ta có:

\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)

b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)

\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

c) \(\dfrac{A}{B}< 4\) khi

\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)

\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\sqrt{x}-5< 0\)

\(\Leftrightarrow x< 25\)

Kết hợp với đk: 

\(0\le x< 5\)