2a = 4b khi rút gọn sẽ bằng 2. Tại sao khi rút gọn lại bằng 2
Mọi ng giúp mk với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tử số : !__!__!__!__!
Mẫu số : !__!__!__!__!__!__!__!
Tử số ban đầu là :
165 : ( 7 + 4 ) x 4 = 60
Mẫu số ban đầu là :
165 - 60 = 105
Vậy ps đó = 60/105
**** mjk đầu tiên
Tổng số phần bằng nhau là:
3+5=8 (phần)
Tử số khi chưa rút gọn là:
48:8*3=18
Mẫu số khi chưa rút gọn là:
48:8*5=30
Đáp số:Tử số khi chưa rút gọn là 18
Mẫu số khi chưa rút gọn là 30
Vậy phân số bằng phân số 3/5 khi chưa rút gọn mà có tổng của tử số và mẫu số khi chưa rút gọn là 18/30
Hatsune Miku ơi 48 : (3+5) x 5 = 48 : 8 x 5 = 6 x 5 = 30 chứ
Tham khảo:
Điều kiện xác định của phương trình là tập hợp các giá trị của ẩn làm cho tất cả các mẫu trong phương trình đều khác 0. Điều kiện xác định của phương trình viết tắt là ĐKXĐ.
Biến đổi được: x = 2 ( a + b ) 3 ( a 3 − b 3 ) ; y = 9 ( a − b ) 2 4 ( a + b )
⇒ P = x . y = 2 ( a + b ) 3 ( a 3 − b 3 ) . 9 ( a − b ) 2 4 ( a + b ) = 3 ( a − b ) 2 ( a 2 + ab + b 2 )
\(A=\left(3m+4n-5p\right)-\left(3m-4n-5p\right)\)
\(\Rightarrow3m+4n-5p-3m+4n+5p=A\)
\(\Rightarrow A=\left(3m-3m\right)+\left(4n+4n\right)-\left(5p-5p\right)\)
\(\Rightarrow A=0+8n+0=8n\)
a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)
c: Để A=3/4 thì 4x-8=3x+6
=>x=14
d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
a) Thay x = 81 vào A ta có:
\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)
b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)
\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
c) \(\dfrac{A}{B}< 4\) khi
\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)
\(\Leftrightarrow\sqrt{x}-5< 0\)
\(\Leftrightarrow x< 25\)
Kết hợp với đk:
\(0\le x< 5\)