cho a=5+5^2+...+5^100
a,tính a
b,a là số nguyên tố hay hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 52 + 53 + 54 + ... + 52021
= 5( 5 + 52 + 53 + ... + 52020 )
Vậy A ⋮ 5 mà A > 5 nên A là hợp số
A = 52 + 53 +...+ 52021
A = 5.(5 + 52 +...+ 5)
⇒A là hợp số vì A ⋮ 5
Vậy...
ta có : A=5+5^2+...+5^100=......5 chia hết cho 5
A=5+5^2+...+5^100>5
suy ra: A là hợp số
b) Ta có :
5 chia hết cho 5
5^2 chia hết cho 5
....................................
5^100 chia hết cho 5
=> A chia hết cho 5, 5 là số nguyên tố (1)
Mà : 5 ko chia hết cho 5^2
5^2 chia hết cho 5^2
.............................................
5^100 chia hết cho 5^2
=> A ko chia hết cho 5^2 (2)
Từ (1) + (2) => A ko là số chính phương
A = 5 + 52 + ....+ 5100
A = 5.( 1 + 5 + ...+ 599)
A > 5 mà A ⋮ 1; 5; A vậy A là hợp số
a) Hợp số (đần nó quen thân )
b) Giống a
c) dấu hiệu chia hết kia rồi còn khi nào nữa
a)hợp số vì nó có tận cung là 2 nên chia hết cho 2]
b)hợp số
c)khi có tận cùng là 5
a.
A = 5 + 5^2 + 5^3 +...+5^100
5A = 5^2 + 5^3 +...+5^101
4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]
A = \(\frac{5^{101}-5}{4}\)
b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5
=> A là hợp số
c,
A = 5 + 5^2 + 5^3 +... + 5^100
A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]
A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]
A = 30 + 5^2.30 + ... + 5^98 . 30
=> A chia hết cho 30
d.
Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]
Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]
=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]
Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng
Mà A chỉ có 4 chữ số 0
=> A không phải số chính phương
Ủng hộ mik nếu thấy OK Nha mấy bạn >..<
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 58)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a. Ta có: A = 5 + 5^2 + 5^3 +....+ 5^100
⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100 ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5
⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6
A = 6. 5 + 5 3 + ... + 5^99 chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số
b,A không hải số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a) \(A=5+5^2+...+5^{100}\)
\(5A=5^2+5^3+...+5^{101}\)
\(5A-A=\left(5^2+5^3+...+5^{101}\right)-\left(5+5^2+...+5^{100}\right)\)
\(4A=5^{101}-5\)
\(A=\frac{5^{101}-5}{4}\)
b) Ta thấy các số hạng của A đều chia hết cho 5
=> A chia hết cho 5
=> A là hợp số
Bonking thiếu nhá
Dễ thấy:\(5+5^2+5^3+....+5^{100}⋮5\)
Mà \(5+5^2+5^3+...+5^{100}>5\)
=> A là hợp số
Phần a làm như Bonking là đúng