cho góc bẹt aob trên cùng một nửa mặt phẳng vẽ các tia oc od sao cho aoc=bod=135
a)chung to oc vuong goc voi oe
b)ob la tia phan giac cua COE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau này rãt dê
Ta co :
Goc bet bang 180 dô
ma goc AOC=40 dô ; BOD=50 dô
Ap dung t/c goc bet ta co:
goc AOB=goc AOC+goc COD+goc BOD
Thay sô:180 do =40 dô+goc COD+50 dô
goc COD =180 dô-(40 do+50 dô)
goc COD=90 dô
Vay goc COD la goc vuong
Tu do suy ra:OC vuong goc voi OD
góc AOC+góc BOC=180 độ
=>góc BOC=180-150=30 độ
góc AOD+góc BOD=180 độ
=>góc AOD=180-150=30 độ
góc AOD=góc BOE(hai góc đối đỉnh)
góc AOD=góc BOC(=30 độ)
=>góc BOC=góc BOE
=>OB là phân giác của góc COE
a) Ta có: \(\widehat{AOC}+\widehat{BOC}=\widehat{AOB}\)
=> \(60^0+\widehat{BOC}=90^0\)
=> \(\widehat{BOC}=90^0-60^0\)
=> \(\widehat{BOC}=30^0\) (1)
Lại có: \(\widehat{BOC}+\widehat{COD}=\widehat{BOD.}\)
=> \(30^0+\widehat{COD}=60^0\)
=> \(\widehat{COD}=60^0-30^0\)
=> \(\widehat{COD}=30^0\) (2)
Từ (1) và (2) => \(\widehat{BOC}=\widehat{COD}\left(=30^0\right).\)
=> OC là tia phân giác của \(\widehat{BOD}.\)
Ta có: \(\widehat{COD}+\widehat{AOD}=\widehat{AOC.}\)
=> \(30^0+\widehat{AOD}=60^0\)
=> \(\widehat{AOD}=60^0-30^0\)
=> \(\widehat{AOD}=30^0\).
Vì \(\widehat{COD}=\widehat{AOD}\left(=30^0\right)\)
=> OD là tia phân giác của \(\widehat{AOC}.\)
b) Vì OB là tia phân giác của \(\widehat{DOE}\)
=> \(\widehat{BOD}=\widehat{BOE}\left(=60^0\right).\)
Ta có: \(\widehat{BOC}+\widehat{BOE}=\widehat{COE}\)
=> \(30^0+60^0=\widehat{COE}\)
=> \(\widehat{COE}=90^0.\)
=> \(OC\perp OE\left(đpcm\right).\)
Chúc bạn học tốt!
Hai góc AOC và BOC kề bù nên A O C ^ + B O C ^ = 180 °
⇒ B O C ^ = 180 ° − 150 ° = 30 ° .
Tương tự, ta tính được A O D ^ = 30 ° .
Ta có B O E ^ = A O D ^ = 30 ° (hai góc đối đỉnh).
Suy ra B O C ^ = B O E ^ = 30 ° . (1)
Tia OB nằm giữa hai tia OC và OE. (2)
Từ (1) và (2) ta được tia OB là tia phân giác của góc COE
Đếm góc, đếm tia
a) Ta có : \(\widehat{AOC}+\widehat{COB}=180^o\)( kề bù )
\(135^o+\widehat{COB}=180^o\)
\(\widehat{COB}=180^o-135^o\)
\(\widehat{COB}=45^o\)
Ta có : \(\widehat{BOC}+\widehat{COD}=\widehat{BOD}\)
\(45^o+\widehat{COD}=135^o\)
\(\widehat{COD}=135^o-45^o\)
\(\widehat{COD}=90^o\)
Ta có : \(\widehat{DOC}+\widehat{COE}=180^o\)( kề bù )
\(90^o+\widehat{COE}=180^o\)
\(\widehat{COE}=90^o\)
\(\Rightarrow OC\perp OE\)
b) Ta có : \(\widehat{COB}+\widehat{BOE}=\widehat{COE}\)
\(45^o+\widehat{BOE}=90^o\)
\(\widehat{BOE}=90^o-45^o\)
\(\widehat{BOE}=45^o\)
\(\Rightarrow\widehat{BOE}=\widehat{COB}=\frac{\widehat{COE}}{2}\)
Vậy OB là tia phân giác của \(\widehat{COE}\)
Bài giải
Ta có : \(\widehat{AOC}=\widehat{BOD}\left(=135^o\right)\)
\(\widehat{DOC}\) chung và OC và OD cùng nằm trên cùng một nửa mặt phẳng nên \(\widehat{DOA}=\widehat{COB}\)
Mà \(\widehat{DOA}=\widehat{EOB}\) ( hai góc đối đỉnh ) nên \(\widehat{BOC}=\widehat{BOE}\)
\(\Rightarrow\text{ }OB\text{ là tia phân giác }\widehat{COE}\)
Ta có : \(\widehat{BOE}\) và \(\widehat{BOD}\) kề bù nên \(\widehat{BOE}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{BOE}+135^o=180^o\text{ }\Rightarrow\text{ }\widehat{BOE}=45^o\)
Ta lại có : \(\widehat{COD}+\widehat{COE}=180^o\)
\(\widehat{COD}+90^o=180^o\)
\(\widehat{COD}=90^o\)
\(\text{ }\Rightarrow\text{ }OC\perp OE\)
Góc Oe là góc nào vậy bn??