K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

Các anh chị giúp em với ạ

góc AOC+góc BOC=180 độ

=>góc BOC=180-150=30 độ

góc AOD+góc BOD=180 độ

=>góc AOD=180-150=30 độ

góc AOD=góc BOE(hai góc đối đỉnh)

góc AOD=góc BOC(=30 độ)

=>góc BOC=góc BOE

=>OB là phân giác của góc COE

24 tháng 7 2019

a) Ta có: \(\widehat{AOC}+\widehat{BOC}=\widehat{AOB}\)

=> \(60^0+\widehat{BOC}=90^0\)

=> \(\widehat{BOC}=90^0-60^0\)

=> \(\widehat{BOC}=30^0\) (1)

Lại có: \(\widehat{BOC}+\widehat{COD}=\widehat{BOD.}\)

=> \(30^0+\widehat{COD}=60^0\)

=> \(\widehat{COD}=60^0-30^0\)

=> \(\widehat{COD}=30^0\) (2)

Từ (1) và (2) => \(\widehat{BOC}=\widehat{COD}\left(=30^0\right).\)

=> OC là tia phân giác của \(\widehat{BOD}.\)

Ta có: \(\widehat{COD}+\widehat{AOD}=\widehat{AOC.}\)

=> \(30^0+\widehat{AOD}=60^0\)

=> \(\widehat{AOD}=60^0-30^0\)

=> \(\widehat{AOD}=30^0\).

\(\widehat{COD}=\widehat{AOD}\left(=30^0\right)\)

=> OD là tia phân giác của \(\widehat{AOC}.\)

b) Vì OB là tia phân giác của \(\widehat{DOE}\)

=> \(\widehat{BOD}=\widehat{BOE}\left(=60^0\right).\)

Ta có: \(\widehat{BOC}+\widehat{BOE}=\widehat{COE}\)

=> \(30^0+60^0=\widehat{COE}\)

=> \(\widehat{COE}=90^0.\)

=> \(OC\perp OE\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 7 2019

cam on ban nhieu nhieu nhieu nha

20 tháng 7 2018

Hai góc AOC và BOC kề bù nên  A O C ^ + B O C ^ = 180 °

⇒ B O C ^ = 180 ° − 150 ° = 30 ° .

Tương tự, ta tính được A O D ^ = 30 ° .

Ta có B O E ^ = A O D ^ = 30 °  (hai góc đối đỉnh).

Suy ra B O C ^ = B O E ^ = 30 ° . (1)

Tia OB nằm giữa hai tia OC và OE. (2)

Từ (1) và (2) ta được tia OB là tia phân giác của góc COE

Đếm góc, đếm tia

16 tháng 9 2020

                                             O A B C D E

a) Ta có : \(\widehat{AOC}+\widehat{COB}=180^o\)( kề bù )

                  \(135^o+\widehat{COB}=180^o\)

                                   \(\widehat{COB}=180^o-135^o\)

                                   \(\widehat{COB}=45^o\)

Ta có : \(\widehat{BOC}+\widehat{COD}=\widehat{BOD}\)

                \(45^o+\widehat{COD}=135^o\)

                              \(\widehat{COD}=135^o-45^o\)

                              \(\widehat{COD}=90^o\)

Ta có : \(\widehat{DOC}+\widehat{COE}=180^o\)( kề bù )

                 \(90^o+\widehat{COE}=180^o\)

                               \(\widehat{COE}=90^o\)

\(\Rightarrow OC\perp OE\)

b) Ta có : \(\widehat{COB}+\widehat{BOE}=\widehat{COE}\)

                    \(45^o+\widehat{BOE}=90^o\)

                                  \(\widehat{BOE}=90^o-45^o\)

                                  \(\widehat{BOE}=45^o\)

\(\Rightarrow\widehat{BOE}=\widehat{COB}=\frac{\widehat{COE}}{2}\)

Vậy OB là tia phân giác của \(\widehat{COE}\)

16 tháng 9 2020

                                                           Bài giải

A O B C D E

 Ta có : \(\widehat{AOC}=\widehat{BOD}\left(=135^o\right)\)

 \(\widehat{DOC}\) chung và OC và OD cùng nằm trên cùng một nửa mặt phẳng nên \(\widehat{DOA}=\widehat{COB}\)

Mà \(\widehat{DOA}=\widehat{EOB}\) ( hai góc đối đỉnh ) nên \(\widehat{BOC}=\widehat{BOE}\)

\(\Rightarrow\text{ }OB\text{ là tia phân giác }\widehat{COE}\)

Ta có : \(\widehat{BOE}\) và \(\widehat{BOD}\) kề bù nên \(\widehat{BOE}+\widehat{BOD}=180^o\)

                                                       \(\Rightarrow\text{ }\widehat{BOE}+135^o=180^o\text{ }\Rightarrow\text{ }\widehat{BOE}=45^o\)

  Ta lại có : \(\widehat{COD}+\widehat{COE}=180^o\)

\(\widehat{COD}+90^o=180^o\)

\(\widehat{COD}=90^o\)

\(\text{ }\Rightarrow\text{ }OC\perp OE\)

24 tháng 9 2016
Ta có : aOc+cOb=180( 2góc kề bù) =>cOb=180-160=20 Lại có: bOd+dOa=180( 2 góc kề bù) =>dOa=180-160=20 Vù Oe là tia đối của Od, Oa là tia đối của Ob nên dOa đối đỉnh với eOb => bOc=bOe=20 =>Ob là tia phân giác của cOe
13 tháng 7 2017

O D C A E B

a) Ta có:

\(\widehat{DOA}=\widehat{COB}\left(=160^o-\widehat{DOC}\right)\) (1)

\(\widehat{DOA}=\widehat{EOB}\) (2 góc đối đỉnh) (2)

Từ (1) và (2) \(\Rightarrow\widehat{COB}=\widehat{BOE}\left(đpcm\right)\)

b) Vì \(\widehat{COB}=\widehat{BOE}\) (cmt)

\(\Rightarrow OB\) là phân giác của \(\widehat{COE}\)