K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

A B C H D M N

a,

Vì BC=CD(giả thiết)và AC=BC => AC=CD

=> Tam giac CAD cân tại C

=> D=180-C-A=180-(180-BCA)-D

=> 2D=180-180+60=60

=>D=30

=>CAD=C=30

=> A= BAC +CAD= 60+30=90

=> tam giac ABC vuông tại A

b,

Ta có :

AB=BC=6 cm

=> BD= 2BC= 2.6=12(cm);

Vì tam giác ABC đều nên 

 AH là đường cao cũng là đường trung tuyến

=> HB=HC=1/2 BC=1/2 .6=3(cm)

Xét tam giac ABD có: A=90

=> theo định lý Pytago, ta có:

AD2 =AB2 +BD2 

=> AD= /(AB2+BD2)=  /(62 + (3+6)2) = 10.82(cm)

=> AM=1/2 AD =1/2. 10,82=5,4 (cm)

Vì tam giác CAD cân nên 

CM là dường trung tuyến cũng là dường cao ứng với cạnh đáy AD

Xét tam giác AMC có AMC=90

=> theo định lí Pytago ta có: CM=2.6 (cm)

chu vi tứ giác ABCM là :

AB+BC+CM+AM= 6+6+2.6+5.4=20(cm)

c,

Xét tam giác ACD co

 N là trung điểm của AC

 M là trung điểm của AD

=> NM là đường trung bình của tam giác ACD

=> MN//CD hayMN//CH (1)

      MN=1/2 CD mà CH=1/2 CD => MN=CH (2)

Từ (1)và (2) => tứ giác MNHC là hình bình hành

4 tháng 9 2018

Mình góp ý nha ý a đúng rồi nhưng ý b và c chưa đúng.

b, Bạn ấy sai ở chỗ \(AD^2=AB^2+BD^2\) (tam giác ABD vuông tại A chứ ko phải vuông tại B)

Gợi ý: -Tính \(HB=HC=3cm\)

-Tính \(AH=\sqrt{27}\left(cm\right)\)(định lí Pitago vào tam giác AHB)

-C/m \(\Delta ACD\)cân tại C mà AM là trung tuyến nên AM là đường cao

-Tính \(\widehat{HAC}=\widehat{MAC}=30^0\)

\(\Delta HAC=\Delta MAC\left(ch-gn\right)\Rightarrow\hept{\begin{cases}AH=AM=\sqrt{27}\left(cm\right)\\HC=MC=3cm\end{cases}}\)

Chu vi tứ giác ABCM là: \(AB+BC+CM+AM=6+6+3+\sqrt{27}=15+\sqrt{27}\left(cm\right)\)

c,MNHC chỉ là hình thang. 

Ở đoạn gần cuối bạn ấy ghi \(HC=\frac{1}{2}CD\) là sai vì \(HC=\frac{1}{2}BC\) chứ ko bằng 1/2 CD

Còn MN//HC thì đúng rồi. Chúc bạn học tốt.

a: Xét tứ giác BEDC có 

A là trung điểm của EC
A là trung điểm của BD

Do đó: BEDC là hình bình hành

Suy ra: BE=CD

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

góc BAD=90 độ

=>ABCD là hình chữ nhật

b: Xét tứ giác EDBC có

ED//BC

ED=BC

=>EDBC là hình bình hành

=>Eb cắt CD tại trung điểm của mỗi đường

=>ID=IB

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

a) Ta có: AC2+BC2=82+152=289

               AB2=172=289

=> AC2+BC2=AB2

=> \(\Delta ABC\)vuông tại C (theo định lý Py-ta-go đảo)

=> đpcm

b) Ta có \(\Delta ACD\)vuông tại C

=> AC2+DC2=AD2  

= 82+62= 100

=> AD=\(\sqrt{100}\)=10(cm)

=> Chu vi \(\Delta ABD\)là:

AD+AB+DC+CB=10+6+15+17=48(cm)

Vậy....

Đề sai rồi bạn

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC