K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

O là giao điểm của 3 đường trung trực của tam giác ABC

⇒ O là tâm đường tròn ngoại tiếp tam giác ABC

OD > OE ⇒ AB < AC

   Bài 3.   Cho tam giác ABC. Gọi D,E, F lần lượt là trung điểm của các cạnh AB, BC, AC.      a) Biết BC = 6 cm, tính độ dài DF ?             b) Chứng minh tứ giac BDFE là hình bình hành.           c/ Chứng minh DE = FC  Bài 4: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, BC. Lấy điểm D đối xứng    với N qua M.      a/ Biết AC = 12cm Tính độ dài đoạn thẳng  MN ?      b/Tứ giác AMNC là hình gì? Vì sao?      c/ Tứ giác...
Đọc tiếp

   Bài 3.   Cho tam giác ABC. Gọi D,E, F lần lượt là trung điểm của các cạnh AB, BC, AC.

      a) Biết BC = 6 cm, tính độ dài DF ?       

      b) Chứng minh tứ giac BDFE là hình bình hành.           c/ Chứng minh DE = FC

  Bài 4: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, BC. Lấy điểm D đối xứng

    với N qua M.

      a/ Biết AC = 12cm Tính độ dài đoạn thẳng  MN ?

      b/Tứ giác AMNC là hình gì? Vì sao?

      c/ Tứ giác ADBN là hình gì? Vì sao?

  Bài 5: Cho tam giác ABC , Gọi I, K, H lần lượt là trung điểm của AB, AC, BC.

      a/ Chứng minh IK là đường trung bình của tam giác ABC

      b/ Biết IK = 7cm, tính BC.      

      c/ Chứng minh tứ giác BIKH là hình bình hành

giúp mik vs mik cần gấp

 

 

0

1: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

hay H là trung điểm của BC

2: BH=CH=BC/2=6cm

=>AH=8cm

3: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó:ΔAHE cân tại A

hay AH=AE(1)

4: Xét ΔADH có

AI là đường cao

AI là đường trung tuyến

Do đó:ΔADH cân tại A

=>AD=AH(2)

Từ (1) và (2)suy ra AD=AE
hay ΔADE cân tại A

b: Xét tứ giác ABCE có 

M là trung điểm của AC
M là trung điểm của BE

Do đó:ABCE là hình bình hành

a: Xét ΔABC có 

D là trung điểm của AB

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: \(FD=\dfrac{BC}{2}=3\left(cm\right)\)

a: Ta có: ΔAHB vuông tại H

mà HD là đường trung tuyến ứng với cạnh huyền AB

nên HD=AD

hay D nằm trên đường trung trực của AH(1)

ta có: ΔAHC vuông tại H

mà HE là đường trung tuyến ứng với cạnh huyền AC

nên HE=AE

hay E nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra DE là đường trung trực của AH

hay A và H đối xứng nhau qua ED