K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

   Bài 3.   Cho tam giác ABC. Gọi D,E, F lần lượt là trung điểm của các cạnh AB, BC, AC.      a) Biết BC = 6 cm, tính độ dài DF ?             b) Chứng minh tứ giac BDFE là hình bình hành.           c/ Chứng minh DE = FC  Bài 4: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, BC. Lấy điểm D đối xứng    với N qua M.      a/ Biết AC = 12cm Tính độ dài đoạn thẳng  MN ?      b/Tứ giác AMNC là hình gì? Vì sao?      c/ Tứ giác...
Đọc tiếp

   Bài 3.   Cho tam giác ABC. Gọi D,E, F lần lượt là trung điểm của các cạnh AB, BC, AC.

      a) Biết BC = 6 cm, tính độ dài DF ?       

      b) Chứng minh tứ giac BDFE là hình bình hành.           c/ Chứng minh DE = FC

  Bài 4: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, BC. Lấy điểm D đối xứng

    với N qua M.

      a/ Biết AC = 12cm Tính độ dài đoạn thẳng  MN ?

      b/Tứ giác AMNC là hình gì? Vì sao?

      c/ Tứ giác ADBN là hình gì? Vì sao?

  Bài 5: Cho tam giác ABC , Gọi I, K, H lần lượt là trung điểm của AB, AC, BC.

      a/ Chứng minh IK là đường trung bình của tam giác ABC

      b/ Biết IK = 7cm, tính BC.      

      c/ Chứng minh tứ giác BIKH là hình bình hành

giúp mik vs mik cần gấp

 

 

0
25 tháng 12 2023

a: Xét ΔABC có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔABC

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Ta có: FE//AB

D\(\in\)AB

Do đó: FE//AD và FE//BD

Ta có: \(FE=\dfrac{AB}{2}\)

\(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)

Do đó: FE=AD=DB

Xét tứ giác ADEF có

FE//AD

FE=AD

Do đó: ADEF là hình bình hành

Hình bình hành ADEF có \(\widehat{FAD}=90^0\)

nên ADEF là hình chữ nhật

=>AE=DF

Xét tứ giác BEFD có

FE//BD

FE=BD

Do đó: BEFD là hình bình hành

b: Xét ΔABC có

D,F lần lượt là trung điểm của AB,AC

=>DF là đường trung bình của ΔABC

=>DF//BC và DF=BC/2

Ta có: DF//BC

E,H\(\in\)BC

Do đó: DF//EH

Ta có: ΔHAC vuông tại H

mà HF là đường trung tuyến

nên HF=FA

mà FA=ED(ADEF là hình chữ nhật)

nên HF=ED

Xét tứ giác EHDF có EH//DF

nên EHDF là hình thang

Hình thang EHDF có ED=HF

nên EHDF là hình thang cân

c: Xét tứ giác AECI có

F là trung điểm chung của AC và EI

=>AECI là hình bình hành

=>AI//CE

mà E\(\in\)CB

nên AI//CB

Xét tứ giác BIKE có

F là trung điểm chung của BK và IE

=>BIKE là hình bình hành

=>IK//EB

mà E\(\in\)BC

nên IK//BC

Ta có: AI//BC

IK//BC

AI,IK có điểm chung là I

Do đó: A,I,K thẳng hàng

a) Xét ∆ABC có : 

D là trung điểm AB 

E là trung điểm BC 

=> DE là đường trung bình ∆ABC 

=> DE//AC , DE = \(\frac{1}{2}AC\)\(\frac{16}{2}=8\)cm

Xét ∆ABC có : 

E là trung điểm BC 

F là trung điểm AC 

=> FE là đường trung bình ∆ABC 

=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)

Xét tứ giác AFED có : 

AD//EF ( AB//FE , D\(\in\)AB )

DE//FA ( DE//AC , F \(\in\)AC )

=> AFED là hình bình hành 

Mà BAC = 90° 

=> AFED là hình chữ nhật 

=> DEF= EFA = FAD = ADE = 90° 

Vì F là trung điểm AC 

=> FA = FC = 8cm

Áp dụng định lý Py - ta -go vào ∆AEF ta có : 

AE2 = FE2 + AF2 

=> AE = 10cm

b) Xét ∆ABC ta có : 

D là trung điểm AB 

F là trung điểm AC 

=> DF là đường trung bình ∆ABC 

=> DF//BC  

Xét tứ giác BEFD ta có : 

BE//DF ( BC//DF , E \(\in\)BC )

BD//FE ( AB//FE , D\(\in\)AB )

=> BEFD là hình bình hành 

c) Chứng minh trên 

27 tháng 11 2017

3 tháng 11 2022

cho \(\Delta ABCD\)

29 tháng 11 2021

a, Trong △ABC có:

là trung điểm của BCE là trung điểm của AC.

⇒ DE là đường trung bình của △ABC.

⇒ DE = 1/2AB (1)

và: DE // AB (2)

Từ (1) suy ra: DE = 1/2 . 6 = 3.

b, Ta có: F là điểm đối xứng với D qua E nên:

DE = DF

⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)

Từ (2),(3) suy ra: ABDF là hình bình hành.

c, Do ABDF là hình bình hành nên:

AF // BD (4) và: AF = BD

Mặt khác, ta có: là trung điểm của BC

=> BD = BC. Mà: AF = BD (cmt)

=> BC = AF (5).

Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.

Ta lại có: AB⊥AC (góc A = 90o)

và: AB // DF

⇒ AC⊥DF.

Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:

ADCF là hình thoi.

Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.

Xét △ADE có: góc E = 90 (AC⊥DF)

⇒ AE+ DE= AD2 (Định lý Pythagore)

thay số: 4+ 32 = AD2

16 + 9 = AD2

25 = AD=> AD = 5 cm.

d, Để ADCF là hình vuông thì: AD⊥BC.

Mà: DC = DB = 1/2BC (gt) nên:

AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:

AB = AC

=> △ABC vuông cân tại A.

Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A

11 tháng 9 2021

a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)

Vậy: MNCB là hình thang (đpcm)

==========

b/ Do MN là đường trung bình của △ABC

Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)

==========

c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)

- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)

Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)

13 tháng 11 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét ΔABH có

M là trung điểm của AB

MI//BH

Do đó: I là trung điểm của AH

13 tháng 11 2021

Cảm ơn bạn

 

11 tháng 11 2021

a: Xét ΔABC có

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC