\(\left(x+0,7\right)^3=-27\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x+0,7\right)^3=-27\Leftrightarrow\left(x+0,7\right)^3=\left(-3\right)^3\Leftrightarrow x+0,7=-3\Leftrightarrow x=-3,7\)2) \(\left(2x-1\right)^{10}=49^5\Leftrightarrow\left(2x-1\right)^{10}=\left(7^2\right)^5\)
\(\Leftrightarrow\left(2x-1\right)^{10}=7^{10}\)
\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)
mấy câu khác tương tự
a) 3x - 2 = 2x - 3
⇔ 3x - 2x = - 3 + 2
⇔ x = - 1
Vậy phương trình có nghiệm duy nhất x = - 1.
b) 3 - 4u + 24 + 6u = u + 27 + 3u
⇔ 2u + 27 = 4u + 27
⇔ 2u - 4u = 27 - 27
⇔ - 2u = 0
⇔ u = 0
Vậy phương trình có nghiệm duy nhất u = 0.
c) 5 - (x - 6) = 4(3 - 2x)
⇔ 5 - x + 6 = 12 - 8x
⇔ - x + 11 = 12 - 8x
⇔ - x + 8x = 12 - 11
⇔ 7x = 1
⇔ x = \(\dfrac{1}{7}\)
Vậy phương trình có nghiệm duy nhất x = \(\dfrac{1}{7}\).
d) -6(1,5 - 2x) = 3(-15 + 2x)
⇔ -9 + 12x = - 45 + 6x
⇔ 12x - 6x = - 45 + 9
⇔ 6x = -36
⇔ x = - 6
Vậy phương trình có nghiệm duy nhất x = - 6.
e) 0,1 - 2(0,5t - 0,1) = 2(t - 2,5) - 0,7
⇔ 0,1 - t + 0,2 = 2t - 5 - 0,7
⇔ -t + 0,3 = 2t - 5,7
⇔ - t - 2t = -5,7 - 0,3
⇔ - 3t = - 6
⇔ t = 2
Vậy phương trình có nghiệm duy nhất t = 2.
f) \(\dfrac{3}{2}\left(x-\dfrac{5}{4}-\dfrac{5}{8}\right)=x\)
\(\Leftrightarrow\dfrac{3}{2}x-\dfrac{15}{8}-\dfrac{5}{8}=x\\ \Leftrightarrow\dfrac{3}{2}x-x=\dfrac{15}{8}+\dfrac{5}{8}\\ \Leftrightarrow\dfrac{1}{2}x=\dfrac{20}{8}\\ \Leftrightarrow x=\dfrac{20}{8}:\dfrac{1}{2}\\ \Leftrightarrow x=5\)
Vậy phương trình có nghiệm duy nhất x = 5.
a)3x-2=2x-3
⇔3x-2x=-3+2
⇔x=-1
b)3-4u+24+6u=u+27+3u
⇔-4u+6u-u-3u=27-3-24
⇔-2u=0
⇔u=0
c)5-(x-6)=4(3-2x)
⇔5-x+6=12-8x
⇔-x+8x=12-5-6
⇔7x=1
⇔x=1/7
d)-6(1,5-2x)=3(-15+2x)
⇔-9+12x=-45+6x
⇔12x-6x=-45+9
⇔6x=-36
⇔x=-6
a,15^8*9^7/27^7*25^4
=3^8*5^8*3^14/3^21*5^8
=3^22*5^8/3^21*5^8
=3
b,9^3/(3^4-3^3)^2
=3^6/3^8-3^6
=3^6/3^6*(3^2-1)
=3^6/3^6*8
=1/8
c,(1/2-2/3+3/4-2/5):x=11/30
=> 11/60:x=11/30
=> x=11/60:11/30
=> x=1/2
d,-3/4*x+0,7*x=1,25:1/8
=> x*(-3/4+0,7)=10
=> x*(-1/20)=10
=> x=10:(-1/20)=200
Mình làm tắt lắm mong bạn thông cảm.
a/ \(3,7-\left|x-4,5\right|=0\)
\(\Leftrightarrow\left|x-4,5\right|=3,7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4,5=3,7\\x-4,5=-3,7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8,2\\x=0,8\end{matrix}\right.\)
Vậy ...............
b/ \(\left(4x-3\right)\left(x-0,7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\\x-0,7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=0,7\end{matrix}\right.\)
Vậy ..
a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)
⇔ 14x - 4,5 - 3x - 12 = 4 - 5x + 3,5
⇔ 14x -3x + 5x = 4 + 4,5 + 3,5
⇔ 16x = 12
⇔ x = \(\dfrac{12}{16}=\dfrac{3}{4}\)
Hàm số \(T\left( x \right)\) xác định trên khoảng \(\left( {0; + \infty } \right)\).
Hàm số \(T\left( x \right)\) xác định trên từng khoảng \(\left( {0;0,7} \right),\left( {0,7;20} \right)\) và \(\left( {20; + \infty } \right)\) nên hàm số liên tục trên các khoảng đó.
Ta có: \(T\left( {0,7} \right) = 10000\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0,{7^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ + }} \left( {10000 + \left( {x - 0,7} \right).14000} \right) = 10000 + \left( {0,7 - 0,7} \right).14000 = 10000\\\mathop {\lim }\limits_{x \to 0,{7^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ - }} 10000 = 10000\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to 0,{7^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ - }} T\left( x \right) = 10000\) nên \(\mathop {\lim }\limits_{x \to 0,7} T\left( x \right) = 10000 = T\left( {0,7} \right)\).
Vậy hàm số \(T\left( x \right)\) liên tục tại điểm \({x_0} = 0,7\).
Ta có: \(T\left( {20} \right) = 10000 + \left( {20 - 0,7} \right).14000 = 280200\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ + }} \left( {280200 + \left( {x - 20} \right).12000} \right) = 280200 + \left( {20 - 20} \right).12000 = 280200\\\mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ - }} \left( {10000 + \left( {x - 0,7} \right).14000} \right) = 10000 + \left( {20 - 0,7} \right).14000 = 280200\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = 280200\) nên \(\mathop {\lim }\limits_{x \to 20} T\left( x \right) = 280200 = T\left( {20} \right)\).
Vậy hàm số \(T\left( x \right)\) liên tục tại điểm \({x_0} = 20\).
Vậy hàm số \(T\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\).
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
(x + 0,7)3 = -27
=> (x + 0,7)3 = (-3)3
=> x + 0,7 = - 3
=> x = -3,7
vậy_
\(\left(x+0,7\right)^3=-27\)
\(\Leftrightarrow\left(x+0,7\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x+0,7=-3\)
\(\Leftrightarrow x=-3,7\)