\(a,7\left(2x-0,5\right)-3\left(x+4\right)=4-5\left(x-0,7\right);\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

a. 7(2x - 0,5) - 3(x + 4) = 4 - 5(x - 0,7)

⇔ 14x - 4,5 - 3x - 12 = 4 - 5x + 3,5

⇔ 14x -3x + 5x = 4 + 4,5 + 3,5

⇔ 16x = 12

⇔ x = \(\dfrac{12}{16}=\dfrac{3}{4}\)

26 tháng 8 2021

\(7.0,5=4,5???\) - Xem lại bài bạn ơi

16 tháng 9 2017

a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y

=5x3-7x2y+2xy2+5x-2y

b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-2x+20\)

16 tháng 9 2017

c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)

=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)

d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

=\(-5x+4x-15\)

=\(-x-15\)

Chúc bạn học tốt(mỏi tay quá)

22 tháng 7 2016

\(A=\left|2x-5\right|.\left(4-\left|2x-5\right|\right)\\ A=4.\left|2x-5\right|-\left|2x-5\right|^2\\ A=-\left(\left|2x-5\right|^2-4.\left|2x-5\right|+4\right)+4\\ A=-\left(\left|2x-5\right|-2\right)^2+4\)

Vì \(\left(\left|2x+5\right|-2\right)^2\ge0\) với mọi x nên \(-\left(\left|2x+5\right|-2\right)^2\le0\)

=> \(-\left(\left|2x+5\right|-2\right)^2+4\le4\) hay \(A\le4\)

Dấu ''='' xảy ra khi và chỉ khi \(\left(\left|2x+5\right|-2\right)^2=0\)

=> \(\left|2x-5\right|=2\)

=> \(\left[\begin{array}{nghiempt}2x-5=2\\2x-5=-2\end{array}\right.\) => \(\left[\begin{array}{nghiempt}2x=7\\2x=3\end{array}\right.\) => \(\left[\begin{array}{nghiempt}x=3,5\\x=1,5\end{array}\right.\)

Chúc bạn làm bài tốt

27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

1 tháng 8 2017

ucchengaingungnhonhung

4 tháng 10 2017

c)(x2+x)2-2(x2+x)-15

đặt x2+x=a ta có

a2-2a-15

=a2+3a-5a-15

=(a2+3a)-(5a+15)

=a(a+3)-5(a+3)

=(a+3)(a-5)

thay a=x2+x

(x2+x+3)(x2+x-5)

16 tháng 9 2017

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)

\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow-3=5x\)

\(\Rightarrow5x=-3\)

\(\Rightarrow x=-\dfrac{3}{5}\)

Vậy ....

P/s : Làm bừa !

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

20 tháng 3 2017

a) 3x+2(x-5)=-x+2

<=> 3x+2x+x=2+10

<=>6x=12

<=>x=2

b) 3x2-2x=0

<=>x(3x-2)=0

<=>\(\left[{}\begin{matrix}x=0\\3x-2=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

c) \(\dfrac{2x}{3}\)+\(\dfrac{x-4}{6}\)=2-\(\dfrac{x}{2}\)

<=>\(\dfrac{8x+2x-8}{12}\)=\(\dfrac{24-6x}{12}\)

<=> 8x+2x-8=24-6x

<=>8x+2x+6x=24+8

<=>16x=32

<=>x=2

d) \(\dfrac{x-2}{x+2}\)-\(\dfrac{3}{x-2}\)= -\(\dfrac{2\left(x-11\right)}{4-x^2}\) ( ĐKXĐ: x\(\ne\)\(\pm\)2)

<=> \(\dfrac{\left(x-2\right)^2-3\left(x+2\right)}{x^2-4}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)

=> (x-2)2-3(x+2)=2(x-11)

<=> x2-4x+4-3x-6=2x-22

<=> x2-4x-3x-2x=-22-4+6

<=> x-9x+20=0

<=> (x-4)(x-5)=0

<=>\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) ( thỏa mãn diều kiện )

d) (x2+1)(x2-4x+4)=0

=> x2-4x+4=0 (x2+1\(\ge\)1 với mọi x)

=>(x-2)2 =0

=>x=2

20 tháng 3 2017

Cảm ơn bạn nhăn Ngọc Vô Tâm

12 tháng 2 2017

\(\frac{3x^3+10x^2-9x-4}{\left(x-1\right)\left(x^2+2x-8\right)}=4\)

<=> \(\frac{\left(x+4\right)\left(x-1\right)\left(3x+1\right)}{\left(x-1\right)\left(x-2\right)\left(x+4\right)}=4\)

<=> \(\frac{3x+1}{x-2}=4\)

<=> 3x + 1 = 4(x - 2)

<=> 3x + 1 = 4x - 8

<=> 4x - 3x = 8 + 1

<=> x = 9

Vậy tập nghiệm của pt là \(S=\left\{9\right\}\)

12 tháng 2 2017

hình như bn thiếu loại trừ trong đkxđ kìa ==''