So sánh
a, \(2^{91}\)và\(5^{35}\)
b, \(2^{332}\)và \(3^{223}\)
c, \(99^{20}\)và \(9999^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
a,2^91=2^85.2^6
=(2^5)^17.64
=32^17.64
5^35=5^34.5
=25^17.5
Có 32^17>25^17;64>5
Nên 2^91>5^35
a, Ta có:
\(2^{225}=2^{3.75}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=3^{2.75}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\)nên \(2^{225}< 3^{150}\)
b, Ta có:
\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)
Bài giải
Ta có :
\(2^{255}=\left(2^{17}\right)^{15}\) \(>\left(2^{16}\right)^{15}=\left(2^8\right)^{30}=256^{30}\)
\(3^{150}=\left(3^{10}\right)^{15}=\left(3^5\right)^{30}=243^{30}\)
\(\text{Vì }256^{30}>243^{30}\text{ }\Rightarrow\text{ }2^{255}>3^{150}\)
Viết rối qá chả thấy j.
\(99^2vs9999^{10}\)
\(9999^{10}=\left(101\cdot99\right)^{10}=101^{10}\cdot99^{10}\)
Vì \(99^{10}>99^2=>99^2< 9999^{10}\)
a) Ta có: 2^91 = (2^13)^7 = 8192^7
5^35 = (5^5)^7 = 3125^7
Vì 8192 > 3125 nên 8192^7 > 3125^7
Vậy 2^91 > 5^35
b) Ta có: 9999^10 = 99^10 . 101^10
Vì 99^2 < 99^10 nên 99^2 < 99^10 . 101^10
Vậy 99^2 < 9999^10
c) Ta có: 2^300 = (2^6)^50 = 64^50
3^200 = (3^4)^50 = 81^50
Vì 49 < 64 < 81 nên 49^50 < 64^50 < 81^50
Vậy 49^50 < 2^300 < 3^200
d) 9^3/25^3 = (9/25)^3
3^6/2^12 = (3^2)^3/(2^4)^3 = 9^3/16^3 = (9/16)^3
Vì 9/25 < 9/16 nên (9/25)^3 < (9/16)^3
Vậy 9^3/25^3 < 3^6/2^12.