K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2024

A = \(\dfrac{2}{1\times3\times5}\) + \(\dfrac{2}{3\times5\times7}\) + \(\dfrac{2}{5\times7\times9}\)+\(\dfrac{2}{7\times9\times11}\)

A = \(\dfrac{1}{2}\) x (\(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) + \(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+\(\dfrac{1}{5\times7}\)-\(\dfrac{1}{7\times9}\)+\(\dfrac{1}{7\times9}\)-\(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\)x (\(\dfrac{1}{1\times3}\) - \(\dfrac{1}{9\times11}\))

A = \(\dfrac{1}{2}\) x (\(\dfrac{1}{3}-\dfrac{1}{99}\))

A = \(\dfrac{1}{2}\times\) \(\dfrac{32}{99}\)

A = \(\dfrac{16}{99}\)

10 tháng 4 2024

B = \(\dfrac{1}{1\times2\times3}\) + \(\dfrac{1}{2\times3\times4}\) + \(\dfrac{1}{3\times4\times5}\) + \(\dfrac{1}{4\times5\times6}\)

B = \(\dfrac{1}{2}\) x (\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+\dfrac{2}{4\times5\times6}\))

B = \(\dfrac{1}{2}\) x (\(\dfrac{1}{1\times2}\)-\(\dfrac{1}{2\times3}\) + \(\dfrac{1}{2\times3}\)-\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{3\times4}\)-\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{4\times5}\)-\(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x(\(\dfrac{1}{1\times2}\) - \(\dfrac{1}{5\times6}\))

B = \(\dfrac{1}{2}\)x (\(\dfrac{1}{2}-\dfrac{1}{30}\))

B = \(\dfrac{1}{2}\)\(\dfrac{7}{15}\)

B = \(\dfrac{7}{30}\)

1 tháng 3 2018

2A=\(\frac{2}{1.2.3}\)+\(\frac{2}{2.3.4}\)+...+\(\frac{2}{18.19.20}\)

=1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20

=1/2-1/19.20

A=1/4-1/19.20.2

vậy A<1/4

5 tháng 8 2016

\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{6.7.8}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{6.7}-\frac{1}{7.8}\)

\(=\frac{1}{1.2}-\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{56}\)

\(=\frac{28}{56}-\frac{1}{56}=\frac{27}{56}\)

Dấu . là nhân nha

5 tháng 8 2016

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)

\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)

.......................................

\(\frac{2}{6.7.8}=\frac{1}{6.7}-\frac{1}{7.8}\)

S= \(\frac{1}{1.2}-\frac{1}{7.8}=\frac{27}{56}\)

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

24 tháng 2 2016

 \(\text{Charlotte :'(}\)

Giải phương trình.

 \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{637}{2550}\)   \(\left(\text{*}\right)\)  

\(ĐKXĐ:\)  \(x\ne0;\)  \(x\ne-1;\)   và  \(x\ne-2\)

Ta có:

\(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)

\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)

\(\frac{1}{3.4.5}=\frac{1}{2}\left(\frac{1}{3.4}-\frac{1}{4.5}\right)\)

\(.....................\)

\(\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{1}{2}\left(\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)

Khi đó, phương trình   \(\left(\text{*}\right)\)   tương đương với  

 \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)=\frac{637}{2550}\)

\(\Leftrightarrow\)  \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)=\frac{637}{2550}\)

\(\Leftrightarrow\)  \(\frac{1}{4}-\frac{1}{2\left(x+1\right)\left(x+2\right)}=\frac{637}{2550}\)

\(\Leftrightarrow\)  \(\frac{1}{2\left(x+1\right)\left(x+2\right)}=\frac{1}{5100}\)

\(\Rightarrow\)   \(2\left(x+1\right)\left(x+2\right)=5100\)

\(\Leftrightarrow\)  \(\left(x+1\right)\left(x+2\right)=2550\)

\(\Leftrightarrow\)  \(^{x_1=-52}_{x_2=49}\)  (t/m điều kiện xác định)

Vậy,  tập nghiệm của pt  \(\left(\text{*}\right)\)  là  \(S=\left\{-52;49\right\}\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:
$4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]$

$=[1.2.3.4+2.3.4.5+3.4.5.6+...k(k+1)(k+2)(k+3)]-[0.1.2.3+1.2.3.4+2.3.4.5+....+(k-1)k(k+1)(k+2)]$

$=k(k+1)(k+2)(k+3)$

$\Rightarrow 4S+1=k(k+1)(k+2)(k+3)+1=[k(k+3)][(k+1)(k+2)]+1$

$=(k^2+3k)(k^2+3k+2)+1=(k^2+3k)^2+2(k^2+3k)+1=(k^2+3k+1)^2$

$\Rightarrow 4S+1$ là số chính phương.