K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

Akai Haruma Thiên Thảo

giúp em với ạ .-.

19 tháng 7 2020

A E D B C F

a,Vì BE là tia phân giác góc B nên

\(\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\)

Vì CD là tia phân góc góc C nên

\(\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\)

mà góc B = góc C  ( vì tam giác ABC cân tại A )

\(\Rightarrow\)góc ABE = góc EBC = góc ACD = góc DCB 

Vậy góc EBC = góc DCB

*Xét tam giác DBC và tam giác ECB có

            góc DCB = góc EBC ( theo chứng minh trên )

          cạnh BC chung

           góc DBC = góc ECB ( tam giác ABC cân )

Do đó : tam giác DBC =  tam giác ECB ( g.c.g )

b,Vì EF // CD 

\(\Rightarrow\)góc EFB = góc DCB 

mà góc DCB = góc EBC ( theo câu a )

\(\Rightarrow\)góc  EFB = góc EBC hay góc EFB = góc EBF 

Vậy tam giác BEF là tam giác cân tại E

Học tốt

19 tháng 7 2020

A B C E D F 1 2

câu a ý \(\widehat{DCB}\ne\widehat{ECB}\)NHA PHẢI LÀ CHỨNG MInH \(\widehat{DCB}=\widehat{EBC}\)MỚI ĐÚNG PẠN GHI NHẦM THÌ PHẢI

A) 

VÌ \(\Delta ABC\)CÂN TẠI A

 \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

TA CÓ BE LÀ PHÂN GIÁC CỦA \(\widehat{B}\)

\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\left(1\right)\)

TA CÓ CD LÀ PHÂN GIÁC CỦA \(\widehat{C}\)

\(\Rightarrow\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\left(2\right)\)

CÓ (1) VÀ (2) MÀ  \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\widehat{ACD}=\widehat{DCB}\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\left(ĐPCM\right)\)

XÉT \(\Delta DBC\)\(\Delta ECB\)

\(\widehat{ABC}=\widehat{ACB}\) HAY \(\widehat{DBC}=\widehat{ECB}\)

BC LÀ CẠNH CHUNG

\(\widehat{DCB}=\widehat{EBC}\left(CMT\right)\)

=>\(\Delta DBC\)=\(\Delta ECB\)(G-C-G) (ĐPCM)

B) VÌ \(AF//DC\)

\(\Rightarrow\widehat{F_1}=\widehat{C_2}\left(ĐV\right)\)

MÀ \(\widehat{EBC}=\widehat{DCB}\)HAY\(\widehat{EBC}=\widehat{C_2}\)

\(\Rightarrow\widehat{F_1}=\widehat{EBC}\)( BẮC CẦU )

HAY \(\widehat{F_1}=\widehat{EBF}\)

=> \(\Delta BEF\)CÂN TẠI E ( ĐPCM)

17 tháng 8 2019

A B C E D F

                                                                               Xét \(\Delta ABF\)có:

                                                                                  \(CD//BF\left(gt\right)\)

                                                                                   \(D\varepsilon AB;E\varepsilon AF\)

\(\Rightarrow\frac{AC}{AF}=\frac{AD}{AB}\)(Định lý Ta-let)

\(\Rightarrow AC.AB=AF.AD\)

mà \(AB=AC\)(vì \(\Delta ABC\)cân tại A)

\(\Rightarrow AC^2=AF.AD\)(1)

Vì \(BE\perp AC\)(gt) \(\Rightarrow\Delta AEB\)vuông tại E

Vì \(CD\perp AB\)(gt) \(\Rightarrow\Delta ACD\)vuông tại D

                                                Xét  \(\Delta AEB\)vuông tại E và  \(\Delta ACD\)vuông tại D có

                                                                     \(\widehat{BAC}\)chung

                                                                     \(AB=AC\)(cmt)

\(\Rightarrow\Delta AEB=\Delta ADB\)(TH: cạnh huyền,góc nhọn)

\(\Rightarrow AE=AD\)(2 cạnh tương ứng) (2)

Từ (1) và (2) đpcm

Đây là cách giải của mình ạ

a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

Xét ΔDBC và ΔECB có 

\(\widehat{DBC}=\widehat{ECB}\)

 BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đo: ΔDBC=ΔECB

b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)

nên ΔBEF cân tại E