bài 2: cho hình vẽ biết:: Ax//Dy. chứng minh rằng A^+B^+O^=360 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha =="
Kẻ Bz // Ax
mà Ax // Cy
=> Bz // Cy
Bz // Ax
=> A + B1 = 1800 (2 góc trong cùng phía)
Bz // Cy
=> C + B2 = 1800 (2 góc trong cùng phía)
Ta có:
A + B + C
= A + B1 + B2 + C
= 1800 + 1800
= 3600 (đpcm)
Chúc bạn học tốt ^^
Kẻ thêm tia Bz
Ta có : \(\widehat{xAB}=\widehat{B_3}\)(mà 2 góc này ở vị trí so le trong)
⇒Ax//Bz
Chứng minh tương tự: \(\widehat{BCy}=\widehat{C_4}\)(mà 2 góc này ở vị trí so le trong)
\(\Rightarrow\) Bz//Cy
⇒Ax//Cy
Bài 5
A B C D E y x
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
A B C E D
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB
Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)
Ta có Ax // By
Vẽ Bz // Ax và nằm trong góc ABC(*)
Vì Ax // Bz (cách dựng)
góc BAx + góc ABz =180 độ (1)
VÌ Ax // Cy ,Bz//Ax > Bz //Cy(tính chất 3 đường thẳng song song)
góc CBz+BCy=180 độ(2)
Từ (1) và (2) >góc BAx +góc ABz+góc CBz+góc BCy=180 độ +180Độ=360độ
Mà góc ABz+góc CBz= góc B (theo *)
>Góc B +góc BAx +góc BCy=360 độ
Kẻ Cz//Ax
Cz//Ax
Ax//By
Do đó: Cz//By
Cz//Ax
=>\(\widehat{zCA}+\widehat{xAC}=180^0\)(hai góc trong cùng phía)
Cz//By
=>\(\widehat{zCB}+\widehat{yBC}=180^0\)(hai góc trong cùng phía)
\(\widehat{xAC}+\widehat{ACB}+\widehat{CBy}\)
\(=\widehat{zCA}+\widehat{xAC}+\widehat{zCB}+\widehat{yBC}\)
=180+180
=360 độ
B A x C y z
Kẻ Bz // Ax
Bz // Cy
ta có Ax // Bz//Cy=>Ax//Cy (đpcm)
Ta có hình vẽ:
A x y y y B z z C
Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz
Ta có: BAx + ABz = 180o (trong cùng phía)
ABz + CBz = ABC
Lại có: BAx + ABC + BCy = 360o (gt)
=> BAx + ABz + CBz + BCy = 360o
=> 180o + CBz + BCy = 360o
=> CBz + BCy = 360o - 180o
=> CBz + BCy = 180o
Mà CBz và BCy là 2 góc trong cùng phía
=> Bz // Cy
Mà Ax // Bz
=> Bz // Cy (đpcm)
Xin link hình bạn ơi
Đề đâu bạn ?