Tìm x biết: |2x-1|5=|1-2x|3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow x^3-8-x\left(x^2-9\right)=1\\ \Leftrightarrow x^3-8-x^3+9x=1\\ \Leftrightarrow9x=9\Leftrightarrow x=1\\ b,\Leftrightarrow8x^3+12x^2+6x+1-8x^3 +12x^2-6x+1-24x^2+24x-1=0\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
a) \(\Leftrightarrow x^3-8-x^3+9x=1\)
\(\Leftrightarrow9x=9\Leftrightarrow x=1\)
b) \(\Leftrightarrow8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2+24x-6=5\)
\(\Leftrightarrow24x=9\Leftrightarrow x=\dfrac{3}{8}\)
\(2x-3+3|x-1|=4x+1.\)
\(\Leftrightarrow3|x-1|=2x+4\)
*Với x < 1 ta có phương trình:
\(3\left(-x+1\right)=2x+4\)
\(\Leftrightarrow-3x+3=2x+4\)
\(\Leftrightarrow5x+1=0\)
\(\Leftrightarrow x=-\frac{1}{5}\)(TM)
*Với \(x\ge1\)ta có phương trình:
\(2x-3+3\left(x-1\right)=4x+1\)
\(\Leftrightarrow2x-3+3x-3=4x+1\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)(TM)
Vậy ............
TH1: \(x\ge5\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=x-5\\\left|2x-1\right|=2x-1\end{matrix}\right.\)
PT <=> \(x-5+2x-1=2x+3\)
<=> x = 9 (Tm)
TH2: \(\dfrac{1}{2}\le x< 5\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=5-x\\\left|2x-1\right|=2x-1\end{matrix}\right.\)
PT <=> 5 - x + 2x -1 = 2x + 3
<=> x = 1(Tm)
TH3: \(x< \dfrac{1}{2}\)
<=> \(\left\{{}\begin{matrix}\left|x-5\right|=5-x\\\left|2x-1\right|=1-2x\end{matrix}\right.\)
PT <=> \(5-x+1-2x=2x+3\)
<=> \(5x=3< =>x=\dfrac{3}{5}\left(l\right)\)
KL: x \(\in\left\{1;9\right\}\)
c) l x - 5 l = 2x
\(\Leftrightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=5\\x+2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Hok tốt!!!!!!!
Tìm x, biết:
a) |2x + 1| = 17
<=>\(\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\x=-9\end{cases}}\)
\(\left|2x-1\right|^5=\left|1-2x\right|^3\)
\(\left|2x-1\right|^5=\left|2x-1\right|^3\)
\(\left|2x-1\right|^3\cdot\left|2x-1\right|^2-\left|2x-1\right|^3=0\)
\(\left|2x-1\right|^3\cdot\left(\left|2x-1\right|^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\\left|2x-1\right|^3=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
Vậy,.........