cho hình vẽ
A1=B1=30
a, tính A2 và B2
b, tính A3 và B3
c, tính A1 và B2
d, so sánh A1 và B2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a//b\Rightarrow\widehat{B_2}+\widehat{A_1}=180^0\left(trong.cùng.phía\right)\\ \Rightarrow\widehat{A_1}=180^0-40^0=140^0\\ b,a//b\Rightarrow\widehat{A_1}=\widehat{B_1}\left(đồng.vị\right)\\ Mà.\widehat{A_1}=\widehat{A_3}\left(đối.đỉnh\right)\\ \Rightarrow\widehat{A_3}=\widehat{B_1}\\ c,Ta.có.\widehat{A_2}+\widehat{B_1}=\widehat{A_2}+\widehat{A_1}=180^0\left(kề.bù\right)\)
Bài 1:
Uses crt;
var i,n,j:integer;
a,b,c:array[1..100000] of integer;
Begin
clrscr;
readln(n);
for i:= 1 to n do readln(a[i]);
for i:= 1 to n do readln(b[i]);
j:=0;
for i:= 1 to n do
Begin
inc(j);
c[j] := a[i];
inc(j);
c[j] := b[i];
end;
for i:= 1 to j do write(c[i],' ');
readln;
end.
a. \(A_4=B_2=37^0\left(slt\right)\)
b. \(A_1=B_1\left(dongvi\right)\)
c. \(B_3=180^0-B_2=180^0-37^0=143^0\left(kebu\right)\)
a) Ta có: A 1 ^ + A 2 ^ + A 3 ^ = 310 ° mà A 2 ^ + A 3 ^ = 180 ° ( hai góc kề bù)
do đó A 1 ^ = 310 ° − 180 ° = 130 ° .
b) Ta có: B 2 ^ = A 2 ^ (hai góc đồng vị); B 2 ^ = B 4 ^ (hai góc đối đỉnh).
Suy ra A 2 ^ = B 4 ^
A1=55o (đồng vị); A2=180o-55o=125o (kề bù với A1); A3=55o (đối đỉnh với A1); A4=125o (đối đỉnh với A2);
B2=125o (đồng vị với A2); B3=55o (đối đỉnh với B1); B4=125o (đối đỉnh với B2)
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn