K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2015

a/

10^n-1=100.........000          -1=99...9999 chia hết cho 9

             n chữ số 0                      n-1 CS 9

b/10^n+8=10.......00    +8=100.....08

                  n CS 0

mà 1+0+0+..+0+8=1+8=9 =>chia hết cho 9=>dpcm

1 tháng 6 2018

a/

10^n-1=100.........000          -1=99...9999 chia hết cho 9

             n chữ số 0                      n-1 CS 9

b/10^n+8=10.......00    +8=100.....08

                  n CS 0

mà 1+0+0+..+0+8=1+8=9 =>chia hết cho 9=>dpcm

13 tháng 7 2021

đề sai kìa bn ơi 

9 tháng 10 2019

Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

18 tháng 3 2018

a)Đặt \(A=n^3+6n^2+8n\)

\(A=n\left(n^2+6n+8\right)\)

\(A=n\left(n^2+2n+4n+8\right)\)

\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)

\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn

b)Đặt \(B=n^4-10n^2+9\)

\(B=n^4-n^2-9n^2+9\)

\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ

2 tháng 11 2017

Đặt A = n^4 - 10n^2 + 9

 = (n^4-n^2)-(9n^2-9) = (n^2-1).(n^2-9)

=(n-1).(n+1).(n-3).(n+3)

Vì n lẻ nên n có dạng 2k+1 (k thuộc Z)

Khi đó A = 2k.(2k+2).(2k-2).(2k+4)

= 16.k.(k+1).(k-1).(k+2)

Ta thấy k-1;k;k+1;k+2 là 4 số nguyên liên tiếp nên có 2 số chẵn liên tiếp và có 1 số chia hết cho 3

=> k.(k+1).(k-1).(k+2) chia hết cho 3 và 8

=> k.(k+1).(k-1).(k+2) chia hết cho 24 [vì(3;8)=1]

=>A chia hết cho 16.24 = 384 => ĐPCM

2 tháng 11 2017

n lẻ=>n=2k+1

Thay vào ta có n4-10n2+9=(2k+1)4+10(2k+1)2+9

=(4k2+4k+1)(4k2+4k+1)-40k2-40k-10+9

=16k4+32k3+24k2+8k+1-40k2-40k-1

=16k4+32k3-16k2-32k

=16k(k3+2k2-k-2)

=16k(k2(k+2)-(k+2))

=16k(k2-1)(k+2)

=>16k(k-1)(k+1)(k+2)

ta có (k-1),k,(k+1),(k+2) là 4 số tự nhiên liên tiếp 

=>(k-1)k(k+1)(k+2) chia hết cho 24

=>16(k-1)k(k+1)(k+2) chia hết 384

  Vậy...

13 tháng 10 2017

Ta có: n^5 - n = n (n^4 -1 ) 
=n (n^2-1)(n^2+1) 
=n(n-1)(n+1)(n^2 - 4 +5) 
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5 
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30 
và n(n-1)(n+1)5 chia hết cho 30 
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30 
hay n^5-n chia hết cho 30

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???