K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Ta có: n^5 - n = n (n^4 -1 ) 
=n (n^2-1)(n^2+1) 
=n(n-1)(n+1)(n^2 - 4 +5) 
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5 
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30 
và n(n-1)(n+1)5 chia hết cho 30 
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30 
hay n^5-n chia hết cho 30

15 tháng 10 2017

Trước tiên bn nên phân tích đa thức thành nhân tử để dễ dàng chứng minh hơn

Ta có: \(A=5n^3+15n^2+10n=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)=\left(n+1\right)\left(5n^2+10n\right)\)\(=5.n\left(n+1\right)\left(n+2\right)\)

Do \(n\left(n+1\right)\left(n+2\right)⋮6\) \((\forall n\in Z)\) (bn tự cm)

\(\Rightarrow A\) \(⋮30\left(\forall n\in Z\right)\)

16 tháng 10 2017

thiếu nhé

vì UCLN(5,6)=1 nên A chia hết cho 5.6=30

23 tháng 10 2018

Ta có :

\(5n^3+15n^2+10\)

= \(5n.\left(n^2+3n+2\right)\)

= \(5n.\left(n^2+n+2n+2\right)\)

=\(5n.\left(n.\left(n+1\right)+2.\left(n+1\right)\right)\)

=5n.\(\left(n+1\right).\left(n+2\right)\)

Vì n.(n+1).(n+2) lac tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n.(n+1).(n+2) chia hết cho 6

=> 5.(n+1).(n+2) chia hết cho 30

Hay \(5n^3+15n^2+10n\) chia hết cho 30

\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)\)

\(=5n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

hay \(5n\left(n+1\right)\left(n+2\right)⋮30\)

5n^3 + 15n^2 +10n

=(5n^3 + 15n^2+ 10n) 

= 30n^6 chia hết cho 30

28 tháng 9 2016

Ta có : 5n3+15n2+10n

=5n(n2+3n+2)

Ta thấy : 5 chia hết cho 30 

Hay : 5n chia hết cho 30

Vậy đpcm

19 tháng 10 2017

\(Ta\)\(có\)\(5n^3+15n+10n=5n\left(n^2+3n+2\right)\)

                 \(=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)

                 \(=5n\left(n+1\right)\left(n+2\right)\)

\(Vì\)\(n\left(n+1\right)\left(n+2\right)⋮6\)\(và\) \(5⋮5\)

\(nên\) \(5n\left(n+1\right)\left(n+2\right)⋮\left(5.6\right)\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\left(đpcm\right)\)

21 tháng 10 2017

bạn giúp mk bài 2 nx

8 tháng 7 2016

\(5n^3+15n^2+10n\)

\(=\left(5n^3+5n^2\right)+\left(10n^2+10n\right)\)

\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=n\left(n+1\right)\left(5n+10\right)\)

\(=n\left(n+1\right)\left(n+2\right).5\)

Vì \(n\left(n+1\right)\left(n+2\right)\)là tích 3 số tự nhiên liên tiếp nên chia hết cho 6; tức tích \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 6.

Tích \(n\left(n+1\right)\left(n+2\right).5\) thừa số 5 nên chia hết cho 5.

Mà ƯCLN ( 5;6) = 1 nên \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 5.6 = 30

Vậy \(5n^3+15n^2+10n\)chia hết cho 30

\(5n^3+15n^2+10n\)

\(=x\left(x+1\right)\left(x+2\right)\)

Ta có : \(x;x+1;x+2\)là 3 số tự nhiên liên tiếp 

=> \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 ; 3 ; 6 => \(x\left(x+1\right)\left(x+2\right)\)chia hết cho 30 ( đpcm )

21 tháng 7 2016

\(A=5n^3+15n^2+10n\)

\(=5n^3+5n^2+10n^2+10n\)

\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=\left(n+1\right)\left(5n^2+10n\right)\)

\(=5n\left(n+1\right)\left(n+2\right)\)

do \(n;n+1;n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow n;n+1;n+2\)chia hết cho 6

\(\Rightarrow A\)chia hết cho 5 và 6

mà 5 và 6 là 2 số nguyên tố cùng nhau

\(\Rightarrow A\)chia hết cho 30 (dpcm)

Chúc pn hk tốt ^-^

28 tháng 9 2016

mình cần câu hỏi này

13 tháng 10 2017

Đoạn trên sai chỗ : 2.( n +2) phải là 2.( n +1) nha!

a n.n.n+5n chia het cho 6

25 tháng 7 2018

a, n^3 +5n

= n^3 -n+ 6n

= n(n^2-1)+ 6n

=n(n-1)(n+1) +6n

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6

Mặt khác, 6n chia hết cho 6.

Suy ra: n(n-1)(n+1) +6n chia hết cho 6

Vậy n^3 + 5n chia hết cho 6

b, n^3 *19n ko chia hết cho 6 được.Bạn nên xem lại đề bài xem có đúng ko.

c, 5n^3 + 15n^2 +10n

= 5n(n^2 +3n+2)

= 5n(n+1)(n+2)

n(n+1)(n+2) chia hết cho 6 nên 5n^3 +15n^2 +10n chia hết cho 6

Chúc bạn học tốt.