Cho \(\Delta ABC\)có M, N, E lần lượt là trung điểm của AB, AC, BC. Chứng minh giao điểm 3 đường trung trực của \(\Delta ABC\)là trực tâm của \(\Delta MNE\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật
b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON
\(\Rightarrow\Delta OAN\)cân tại O (1)
Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)
mà\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)
c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC
d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI
\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)mà\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)
Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN
a) ΔABC vuông tại A
Áp dụng định lý Pi-ta-go ta có:
BC2 = AC2+AB2
⇒BC2-AC2=AB2
⇒100-64=AB2
⇒36=AB
⇒AB=6(cm)
b) Xét ΔAIB và ΔDIB có:
góc BAI = góc BDI (= 90 độ)
Chung IB
góc IBA = góc IBD (gt)
⇒ ΔAIB = ΔDIB (ch-gn)
⇒ BA = BD (2 cạnh tương ứng)
c) Gọi giao BI và AD là F
Xét ΔABF và ΔDBF có:
AB = DB (cmb)
góc ABF = góc DBF (gt)
chung BF
⇒ ΔABF = ΔDBF (c.g.c)
⇒ FA = FD (2 cạnh tương ứng)
góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD
Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD
d) Gọi giao của BI và EC là G
Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC
a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O
➡️O là tâm đg tròn ngoại tiếp ∆ ABC
➡️AO là đg ttrực của BC (đpcm)
b, Gọi giao điểm của AO là BC là H.
Xét ∆ ABC cân tại A
➡️AO là đg ttrực đồng thời là đg phân giác
➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°
Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)
➡️OA = OB = OC
Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60°
➡️∆ ABO đều
➡️BH là đg cao đồng thời là ttuyến
➡️BH là đg ttuyến của AC
mà E là giao của ttrực AB và ttuyến AO
➡️E là trọng tâm ∆ ABO
C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)
c, Xét ∆ ABC cân tại A
Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°
Gọi OM và ON lần lượt là đg ttrực của AB và AC
Vì AB = AC ➡️AM = BM = AN = CN
Xét ∆ vuông BEM và ∆ CFN có:
Góc M = góc N = 90°
BM = CN (cmt)
Góc ABC = góc ACB (cmt)
➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)
➡️BE = CF ( 2 cạnh t/ư) (1)
ME = NF (2 cạnh t/ư)
Xét ∆ vuông BEM có góc ABC = 30°
➡️Góc BEM = 90° - 30° = 60°
mà góc BEM đối đỉnh với góc OEH
➡️Góc BEM = góc OEH = 60°
Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°
➡️∆ OBE cân tại E
➡️BE = OE
Ta có: OE + ME = OM
OF + NF = ON
mà OM = ON, ME = NF
➡️OE = OF
Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°
➡️∆ OEF đều
➡️OE = EF
mà OE = BE (cmt)
➡️BE = EF (2)
Từ (1) và (2) ➡️BE = EF = CF (đpcm)
Hok tốt~
P/s : ôi mỏi tay quá k mk với~