K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

a) Tứ giác ANHM có 3 góc vuông : AMH ; MAN ; ANH nên là hình chữ nhật

b) Hình chữ nhật ANHM có AH cắt MN tại trung điểm mỗi đường nên OA =\(\frac{AH}{2};ON=\frac{MN}{2}\)mà AH = MN nên OA = ON

\(\Rightarrow\Delta OAN\)cân tại O (1)

Ta lại có :\(\Delta ABC,\Delta AHC\)lần lượt vuông tại A,H có\(\widehat{B}+\widehat{C}=\widehat{HAC}+\widehat{C}=90^0\Rightarrow\widehat{B}=\widehat{OAN}=\widehat{ONA}\)(do 1)

\(\widehat{ONA}+\widehat{ONC}=180^0\)(kề bù).Vậy tứ giác BCNM có\(\widehat{B}+\widehat{MNC}=180^0\Rightarrow\widehat{C}+\widehat{BMN}=180^0\)

c)\(\Delta ANM,\Delta ABC\)cùng vuông tại A có\(\widehat{B}=\widehat{MNA}\Rightarrow\Delta ANM~\Delta ABC\left(g-g\right)\Rightarrow\frac{AN}{AM}=\frac{AB}{AC}\)=> AM.AB = AN.AC

5 tháng 4 2017

d)\(\Delta ABC\)vuông tại A có I là trung điểm BC nên trung tuyến AI =\(\frac{BC}{2}\)mà BI =\(\frac{BC}{2}\)nên AI = BI

\(\Rightarrow\Delta ABI\)cân tại I =>\(\widehat{BAI}=\widehat{B}=\widehat{MNA}\)\(\Delta AMN\)vuông tại A có\(\widehat{AMN}+\widehat{MNA}=90^0\)

Gọi giao điểm AI và MN là P thì\(\Delta AMP\)có \(\widehat{MAP}+\widehat{AMP}=90^0\)nên\(\Delta AMP\)vuông tại P => AI _|_ MN

31 tháng 5 2021

ai help mik bài này đc ko

 

31 tháng 5 2021

a) ΔABC vuông tại A 

Áp dụng định lý Pi-ta-go ta có: 

BC2 = AC2+AB2

⇒BC2-AC2=AB2

⇒100-64=AB2

⇒36=AB

⇒AB=6(cm)

b) Xét ΔAIB và ΔDIB có:

góc BAI = góc BDI (= 90 độ)

Chung IB

góc IBA = góc IBD (gt)

⇒ ΔAIB = ΔDIB (ch-gn)

⇒ BA = BD (2 cạnh tương ứng)

c)  Gọi giao BI và AD là F

Xét ΔABF và ΔDBF có:

AB = DB (cmb)

góc ABF = góc DBF (gt)

chung BF

⇒ ΔABF = ΔDBF (c.g.c)

⇒ FA = FD (2 cạnh tương ứng)

góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD

Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD

d) Gọi giao của BI và EC là G

Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC

 

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

14 tháng 6 2018

a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O

➡️O là tâm đg tròn ngoại tiếp ∆ ABC 

➡️AO là đg ttrực của BC (đpcm)

b, Gọi giao điểm của AO là BC là H.

Xét ∆ ABC cân tại A

➡️AO là đg ttrực đồng thời là đg phân giác

➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°

Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)

➡️OA = OB = OC

Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60° 

➡️∆ ABO đều

➡️BH là đg cao đồng thời là ttuyến

➡️BH là đg ttuyến của AC

mà E là giao của ttrực AB và ttuyến AO

➡️E là trọng tâm ∆ ABO

C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)

c, Xét ∆ ABC cân tại A

Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°

Gọi OM và ON lần lượt là đg ttrực của AB và AC

Vì AB = AC ➡️AM = BM = AN = CN

Xét ∆ vuông BEM và ∆ CFN có:

Góc M = góc N = 90°

BM = CN (cmt)

Góc ABC = góc ACB (cmt)

➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)

➡️BE = CF ( 2 cạnh t/ư) (1)

     ME = NF (2 cạnh t/ư)

Xét ∆ vuông BEM có góc ABC = 30°

➡️Góc BEM = 90° - 30° = 60°

mà góc BEM đối đỉnh với góc OEH

➡️Góc BEM = góc OEH = 60°

Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°

➡️∆ OBE cân tại E

➡️BE = OE

Ta có: OE + ME = OM

           OF + NF = ON

mà OM = ON, ME = NF

➡️OE = OF

Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°

➡️∆ OEF đều

➡️OE = EF

mà OE = BE (cmt)

➡️BE = EF (2)

Từ (1) và (2) ➡️BE = EF = CF (đpcm)

Hok tốt~

P/s : ôi mỏi tay quá k mk với~

a: Xét tứ giác BFED có 

ED//BF

FE//BD

Do đó: BFED là hình bình hành

Xét ΔABC có

D là trung điểm của BC

DE//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AC

EF//CB

Do đó: F là trung điểm của AB

Xét ΔCDE và ΔEFA có 

CD=EF

DE=FA

CE=EA

Do đó: ΔCDE=ΔEFA

b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC

Trên tia FE lấy điểm E sao cho E là trung điểm của FK

Xét tứ giác AFCK có 

E là trung điểm của AC

E là trung điểm của FK

Do đó: AFCK là hình bình hành

Suy ra: AF//KC và KC=AF

hay KC//FB và KC=FB

Xét tứ giác BFKC có 

KC//FB

KC=FB

Do đó: BFKC là hình bình hành

Suy ra: FE//BC(ĐPCM)

18 tháng 10 2020

a) T/có : AB = AC (gt)

=> Tam giác ABC cân tại A (đn)

AN = NB = AB/2 (N là trung điểm của AB)

AM = MC = AC/2 (M là trung điểm của AC)

mà AB = AC (tam giác ABC cân tại A)

=> AM = MC = AN = NB 

Xét tam giác ABM và tam giác ACN có:

   AM = AN (cmt)

   A là góc chung

   AB = AC (tam giác ABC cân tại A)

=> Tam giác ABM = Tam giác ACN (c.g.c)

Xét tam giác BNC và tam giác CMB có:

   BN = CN (cmt)

   NBC = MCB (tam giác ABC cân tại A)

   BC là cạnh chung

=> Tam giác BNC = Tam giác CMB (c.g.c)

b) MB = ME (M là trung điểm của BE)

NC = NF (N là trung điểm của CF)

mà MB = NC (tam giác BNC = tam giác CMB)

=> ME = NF

T/có : ANF = BNC (2 góc đối đỉnh)

       AME = CMB (2 góc đối đỉnh)

mà BNC = CMB (tam giác BNC = CMB)

=> ANF = AME

Xét tam giác ANF và tam giác AME có:

   AN = AM (cmt)

   ANF = AME (cmt)

   NF = ME (cmt)

=> Tam giác ANF = tam giác AME (c.g.c)

=> AF = AE (2 cạnh tương ứng)

=> A là trung điểm của FE

c) Vì AM = AN (cmt)

=> Tam giác ANM cân tại A

=> ANM = (180 − NAM) : 2 (1)

Tam giác ABC cân tại A

=> ABC = (180 − BAC) : 2 (2)

Từ (1) và (2) => ANM = ABC 

mà 2 góc này ở vị trí đồng vị

=> MN // BC

Xét tam giác ANF và BNC có:

   AN = NB (N là trung điểm của AB)

   ANF = BNC (2 góc đối đỉnh)

   NF = NC (N là trung điểm của FC)

=> Tam giác ANF = Tam giác BNC (c.g.c)

=> FAN = CBN (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AF // BC

mà MN // BC (cmt)

=> EF // MN // BC (đpcm)

18 tháng 10 2020

A B C M N

Tam giác ABM nào hả :)) ?