chứng minh rằng nếu 3 điểm A,B,C không thẳng hàng thì các điểm A',B',C' đối xứng qua O cũng không thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,B,C không thẳng hàng
=>A,B,C là ba đỉnh của ΔABC
=>\(AB+AC>BC;AC+BC>AB;BC+AC>AB\)
Xét tứ giác ABA'B' có
O là trung điểm chung của A'A và BB'
nên ABA'B' là hình bình hành
=>AB=A'B'
Xét tứ giác AC'A'C có
O là trung điểm chung của A'A và C'C
nên AC'A'C là hình bình hành
=>AC=A'C'
Xét tứ giác BC'B'C có
O là trung điểm chung của BB' và CC'
nên BC'B'C là hình bình hành
=>BC=B'C'
\(AB+AC>BC\)
mà AB=A'B' và AC=A'C' và BC=B'C'
nên \(A'B'+A'C'>B'C'\left(1\right)\)
AC+BC>AB
mà AC=A'C' và BC=B'C' và AB=A'B'
nên A'C'+B'C'>A'B'(2)
BA+BC>AC
mà BA=B'A' và BC=B'C' và AC=A'C'
nên B'A'+B'C'>A'C'(3)
Từ (1),(2),(3) suy ra A'B';A'C';B'C' là ba cạnh của một tam giác
=>A',B',C' không thẳng hàng(ĐPCM)
a: Ta có: B đối xứng với A qua Ox
nên OA=OB(1)
Ta có: C đối xứng với A qua Oy
nên OA=OC(2)
Từ (1) và (2) suy ra OB=OC
b) Đúng vì hai tam giác đối xứng nhau qua một trục thì bằng nhau nên chúng cũng có chu vi bằng nhau.
c) Đúng. Tất cả các đường thẳng đi qua tâm đều là trục đối xứng của đường tròn.
d) Sai.
Mọi đoạn thẳng AB đều có hai trục đối xứng là đường thẳng AB và đường trung trực của đoạn thẳng AB.
GIải
Nếu A , B ,C thẳng hàng và A,B,D thẳng hàng
=> 4 điểm A,B,C,D thẳng hàng
Vậy thì B,C,D cũng thẳng hàng
b) Nếu ba điểm A,B,C thẳng hàng và A,B,D không thẳng hàng
=> D không thẳng hàng với A,B,C
Vậy B,C,D cũng không thẳng hàng