K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biếnx2 - 8x +19                                              c) 4x2+ 4x+ 3x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5x2 + 4y2 – 2xy – 6y- 10( x- y) + 32Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi- x2+ 2x - 7                                              c) -x2 - 6x - 10- x2 - 3x - 5                                               d) -x2+ 4xy - 5y2- 8y...
Đọc tiếp

Bài 2: CMR các biểu thức sau luôn dương vs mọi giá trị của biến

  1. x2 - 8x +19                                              c) 4x2+ 4x+ 3

  2. x2+ y2- 4x+2                                            d) x2- 2xy+2y2+2y+5

  3. x2 + 4y2 – 2xy – 6y- 10( x- y) + 32

Bài 3:CMR các biểu thức sau luôn âm vs mọi giá trị của bi

  1. - x2+ 2x - 7                                              c) -x2 - 6x - 10

  2. - x2 - 3x - 5                                               d) -x2+ 4xy - 5y2- 8y -18

  3. –x2 + 2xy- 4y2 + 2x + 10y - 8

Bài 4: a) Cho ba số x, y, z thỏa mãn: x + y + z = 0 và x2 + y2 + z2 = a2.  Tính x4 + y4 + z4

b)Cho x, y thỏa mãn : x + y = a ; x2 + y2 = b và x3 + y3 = c. Chứng minh rằng : a3 + 2c = 3ab

c) Cho a + b + c + d = 0.Chứng minh rằng a3 + b3 + c3 + d3 = 3( c +d)( ab – cd)

 

1
30 tháng 9 2018

\(A=x^2-8x+19\)

\(=x^2-8x+16+3\)

\(=\left(x-4\right)^2+3\)

Nhận thấy:  \(\left(x-4\right)^2\ge0\)  ;  \(\forall x\)

=>  \(\left(x-4\right)^2+3>0\)

hay A luôn dương với mọi giá trị của x

30 tháng 10 2020

a) x2 - 8x + 19 = ( x2 - 8x + 16 ) + 3 = ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) x2 + y2 - 4x + 2 = ( x2 - 4x + 4 ) + y2 - 2 = ( x - 2 )2 + y2 - 2 ≥ -2 ∀ x, y ( chưa cm được -- )

c) 4x2 + 4x + 3 = ( 4x2 + 4x + 1 ) + 2 = ( 2x + 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

d) x2 - 2xy + 2y2 + 2y + 5 = ( x2 - 2xy + y2 ) + ( y2 + 2y + 1 ) + 4 = ( x - y )2 + ( y + 1 )2 + 4 ≥ 4 > 0 ∀ x, y ( đpcm )

21 tháng 9 2022

Không biê

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:

a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên

$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$

Vậy biểu thức luôn nhận giá trị âm với mọi $x$

b.

$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$

$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

c.

$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

d.

$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

27 tháng 7 2017

a. \(x^2-8x+19\)

\(=x^2-2.x.4+16+3\)

\(=\left(x-4\right)^2+3\ge3\forall x\)

=> đpcm

b. \(4x^2+4x+3\)

\(=\left(2x\right)^2+2.2x.1+1+2\)

\(=\left(2x+1\right)^2+2\ge2\forall x\)

=> đpcm

27 tháng 7 2017

d, \(x^2-2xy+2y^2+2y+5\)

\(=x^2-2xy+y^2+y^2+2y+1+4\)

\(=\left(x-y\right)^2+\left(y+1\right)^2+4\)

Với mọi giá trị của x;y ta có:

\(\left(x-y\right)^2\ge0;\left(y+1\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4\ge4>0\)

Vậy.............

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

a) \(A=x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\forall x\)

b) \(B=4x^2-4x+11\)

\(=4x^2-4x+1+10\)

\(=\left(2x-1\right)^2+10>0\forall x\)

c) \(C=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

d) Ta có: \(D=x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)

e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)

\(=x^2-2xy+y^2+x^2-8x+16+4\)

\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)