Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a là số nguyên thì 2 chia hết cho n-1
=> n-1 \(\in\) Ư(2)
=> n-1 \(\in\) {-2;-1;1;2}
=> n \(\in\) {-1;0;2;3}
a là số nguyên
<=>2 chia hết cho n-1
<=>n-1 \(\in\) Ư(2)
<=>n-1 \(\in\) {-2;-1;1;2}
<=>n \(\in\) {-1;0;2;3}
Vậy.................
â, Để A có giá trị nguyên => n-5 chia hết cho n+1
Ta có:n-5=n+1-6
Vì n+1 chia hết cho n+1
De n-5 chia het cho n+1=> 6 chia hết cho n+1
=> n+1 thuộc U(6)
{LẬP BẢNG VÀ TỰ TÍNH}
B, Để A là p/s tối giản => n-5 khac n+1
Mà n+1 khác 0 => n khác -1
(MK NHỚ Z THÔI VÌ K CÓ SÁCH VỞ Ở ĐÂY NẾU SAI ĐỪNG TRÁCH NHA)
a: Để A là số nguyên thì \(n+1-4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: Để B là số nguyên thì \(2n+4-7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
c: Để C là số nguyên thì \(2n-2+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
d: Để D là số nguyên thì \(-n-2+7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |