I x -1 I+3x =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|7 + 5x| = 1 - 4x
=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)
=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)
|4x2 - 2x| + 1 = 2x
=> |4x2 - 2x| = 2x - 1
=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)
Vậy ...
A=(3x-3)-(10-6x)
=3x-3-10+6x
=6x+3x-3-10
=9x-13
B=(4x-12)+(4x-2)+(4-3x)
=4x-12+4x-2+3-3x
=5x-11
a ) \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1=VP\)
Đẳng thức xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\Rightarrow1\le x\le2\)
c ) \(VT=\left|x+1\right|+\left|2x+4\right|\ge\left|x+1+2x+4\right|=\left|3x+5\right|\ge3x+5=VP\)
Đẳng thức xảy ra khi \(\begin{cases}\left(x+1\right)\left(2x+4\right)\ge0\\3x+5\ge0\end{cases}\Rightarrow x\ge1\)
1) \(\left(x-2\right)\left(\frac{x+1}{3}-x+1\right)=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+x-\frac{2\left(x+1\right)}{3}+2x-2=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+3x-\frac{2\left(x+1\right)}{3}-2=0\)
\(\Leftrightarrow x\left(x+1\right)-3x^2+9x-2\left(x+1\right)-6=0\)
\(\Leftrightarrow x^2+x-3x^2+9x-2x-2-6=0\)
\(\Leftrightarrow-2x^2+8x-8=0\)
\(\Leftrightarrow-2\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow-2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow-2\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy nghiệm của phương trình là: {2}
2) \(\left(3x+4x\right)\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(-\frac{11x}{10}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\-\frac{11x}{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{10}{11}\end{cases}}\)
Vậy: nghiệm của phương trình là: \(\left\{0;\frac{10}{11}\right\}\)
3) \(\left|x-1\right|=x^2-x\)
\(\Leftrightarrow x-1=x^2-x\)
\(\Leftrightarrow1=x^2-x-x\)
\(\Leftrightarrow1=x^2\)
\(\Leftrightarrow x^2=1\)
\(\Rightarrow x=\pm1\)
Vậy nghiệm phương trình là: {1; -1}
4) \(\left|x^2-3x+1\right|=2x-3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=2x-3\\x^2-3x+1=-\left(2x-3\right)\end{cases}}\)
Xét trường hợp này rồi làm tiếp, dễ rồi :))
a) + Với x < 1, ta có:
|x| + |x - 1| = -x + [-(x - 1)]
= -x - x + 1
= -2x + 1
+ Với \(x\ge1\), ta có:
|x| + |x - 1| = x + x - 1
= 2x - 1
b) + Với \(x< -\frac{2}{3}\), ta có:
|3x + 2| - (x + 1) = -(3x + 2) - (x + 1)
= -3x - 2 - x - 1
= - 4x - 3
+ Với \(x\ge-\frac{3}{2}\), ta có:
|3x + 2| - (x + 1) = 3x + 2 - x - 1
= 2x + 1
a) Ta có I 2x - 1 I = 2015
=> 2x-1=2015 hoặc 2x-1=2015
+,Th1: 2x-1=2015
2x=2015+1
2x=2016
x=2016:2
x=1008
+,Th2: 2x-1=-2015
2x=-2015+1
2x=-2014
x=-2014:2
x=-1007
Vậy x=1008, x=-1007
|x-1|<5
th1: x-1<5=> x<6
th2: x-1<-5=> x<-4
vậy x <6 hoặc<-4
|x-1|>5 cũng tương tự như thế
còn mấy câu khác Nguyễn Diệu Thảo làm thế chắc bạn cũng biết cách làm rồi
L_I_K_E CHO MÌNH NHA!!!
| x - 1 | + 3x = 1
* Nếu x - 1 \(\ge\)0<=> x \(\ge\)1 thì
PT <=> x - 1 + 3x = 1
<=> 4x = 2
<=> x = 1/2 ( ko tm )
* Nếu x - 1 < 0 <=> x < 1 thì
PT <=> -x + 1 + 3x = 1
<=> 2x = 0
<=> x = 0 ( ko tm )
Vậy PT vô nghiệm
\(|x-1|+3x=1\)
\(\Leftrightarrow x-1+3x=1\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Tk cho mk nha... Chúc bạn học tốt