K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

Ta có: \(\left(x-y\right)^2\ge0\left(\forall x;y\right)\)

            \(x^2\ge0\left(\forall x\right)\)

           \(y^2\ge0\left(\forall y\right)\)

\(\Rightarrow A=\left(x-y\right)^2+x^2+y^2-1\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=0\)

Vậy Amin = -1 <=> x = y = 0

21 tháng 9 2021

2) \(A=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\)

\(maxA=19\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

22 tháng 9 2021

Câu 1 Tìm GTNN là

A=2a2+b2-2ab+10a+42

 

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.

Có:

$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$

Vậy $y=\frac{1}{27}x$

$y_1=\frac{1}{27}x_1$

Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$

$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$

b. Đặt $y=kx$

$y_1=kx_1$

$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.

$\Rightarrow y_2=\frac{-2}{5}x_2$

Thay vào điều kiện $y_2-x_2=-7$ thì:

$\frac{-2}{5}x_2-x_2=-7$

$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$

$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$

25 tháng 11 2016

a)Vì x,y là 2 đại lượng tỉ lê thuận nên:

\(\frac{x_1}{x_2}=\frac{y_1}{y_2}\Leftrightarrow\frac{x_1}{3}=\frac{-\frac{3}{5}}{-\frac{1}{9}}\)

\(\Leftrightarrow\frac{x_1}{3}=\frac{27}{3}\Leftrightarrow x_1=\frac{27\cdot3}{3}=27\)

b)Vì x,y là 2 đại lượng tỉ lệ thuận nên:

\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\Leftrightarrow\frac{-2}{5}=\frac{y_2}{x_2}\Leftrightarrow\frac{x_2}{5}=\frac{y_2}{-2}\)

Áp dụng tc dãy tí

\(\frac{x_2}{5}=\frac{y_2}{-2}=\frac{y_2-x_2}{-2-5}=\frac{-7}{-7}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x_2}{5}=1\Rightarrow x_2=5\\\frac{y_2}{-2}=1\Rightarrow y_2=-2\end{cases}}\)

a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

nên \(\dfrac{x_1}{3}=\dfrac{-3}{5}:\dfrac{-1}{9}=\dfrac{3}{5}\cdot9=\dfrac{27}{5}\)

hay x1=81/5

b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\) nên \(\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)

Do đó: x2=5;y2=-2

15 tháng 11 2021

\(a,y_2=kx_2\Rightarrow k=\dfrac{1}{7}:2=\dfrac{1}{14}\\ \Rightarrow y_1=\dfrac{1}{14}x_1\\ \Rightarrow x_1=-\dfrac{3}{4}:\dfrac{1}{14}=-\dfrac{21}{2}\\ b,y_1=kx_1\Rightarrow k=\dfrac{11}{2}:\dfrac{11}{7}=\dfrac{7}{2}\\ \Rightarrow y_2=\dfrac{7}{2}x_2\Rightarrow x_2=-\dfrac{9}{3}:\dfrac{7}{2}=-\dfrac{6}{7}\)

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

22 tháng 11 2017

\(a.\)VÌ 2 ĐẠI LƯỢNG X, Y TỈ LỆ THUẬN VỚI NHAU NÊN , TA CÓ :

\(\frac{x_1}{y_1}=\frac{x_2}{y_2}\)

\(hay\frac{x_1}{\frac{3}{5}}=\frac{3}{\frac{1}{9}}\)

\(\Rightarrow\frac{1}{9}x=3.\frac{3}{5}=\frac{9}{5}\)

\(\Rightarrow x=\frac{9}{5}:\frac{1}{9}=\frac{81}{5}\)

VẬY , \(x=\frac{81}{5}\)

\(b.\)VÌ 2 ĐẠI LƯỢNG X, Y TỈ LỆ THUẬN VỚI NHAU NÊN , TA CÓ :

\(\frac{x_1}{y_1}=\frac{x_2}{y_2}\)

\(hay\frac{5}{-2}=\frac{x_2}{y_2}\Rightarrow\frac{y_2}{-2}=\frac{x_2}{5}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU , TA CÓ :

\(\frac{y_2}{-2}=\frac{x_2}{5}=\frac{y_2-x_2}{-2-5}=\frac{-7}{-7}=1\)

\(\Rightarrow y_2=1.\left(-2\right)=-2\)

\(x_2=1.5=5\)

VẬY , \(x_2=5\)VÀ \(y=-2\)

2 tháng 1 2022

tách nhỏ câu hỏi ra bạn

2 tháng 1 2022

cảm ơn yeu