gpt
(2x2 - x -1)2 -3 = 4x2 - 2x +2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=\dfrac{4x^2+3-19}{x-2}=\dfrac{4x^2-16}{x-2}=\dfrac{4\left(x-2\right)\left(x+2\right)}{x-2}=4x+8\)
b: \(=\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2}{x+2y}-\dfrac{1}{x-2y}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2x-4y-x-2y+4}{\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{x-6y+4}{\left(x+2y\right)\left(x-2y\right)}\)
a. (2x + 1)2 - 4x2 + 2x2 - 2 = 0
<=> (2x + 1 - 2x)(2x + 1 + 2x) + 2(x2 - 1) = 0
<=> (4x + 1) + 2x2 - 2 = 0
<=> 4x + 1 + 2x2 - 2 = 0
<=> 2x2 + 4x - 2 + 1 = 0
<=> 2x2 + 4x - 1 = 0
<=> 2x2 + 4x = 1
<=> 2x(x + 2) = 1
Vì 1 chỉ có tích là 1 . 1 nên:
<=> \(\left[{}\begin{matrix}2x=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)
\(a,\Leftrightarrow4x^2+4x+1-4x^2+2x^2-2=0\\ \Leftrightarrow2x^2+4x-1=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-3=0\\ \Leftrightarrow2\left(x+1\right)^2-3=0\\ \Leftrightarrow\left(x+1\right)^2=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{3}{2}}\\x+1=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{6}}{2}\\x=\dfrac{-2+\sqrt{6}}{2}\end{matrix}\right.\)
\(b,\left(x-2\right)\left(x+2\right)-\left(x+3\right)^2-2x-5=0\\ \Leftrightarrow x^2-4-x^2-6x-9-2x-5=0\\ \Leftrightarrow-8x=18\\ \Leftrightarrow x=-\dfrac{9}{4}\)
a) (2x – 1)(4x2 + 2x + 1) – 4x(2x2 – 3) = 23
⇔ 8x3 – 1 – 8x3 + 12x = 23
⇔ 12x = 24 ⇔ x = 2.
Tập nghiệm của phương trình: S = {2}
b) ĐKXĐ : x + 1 ≠ 0 và x – 2 ≠ 0 (vì vậy x2 – x – 2 = (x + 1)(x – 2) ≠ 0)
⇔ x ≠ -1 và x ≠ 2
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x2 – 4 – x – 1 = x2 – x – 2 – 3 ⇔ 0x = 0
Phương trình này luôn nghiệm đúng với mọi x ≠ -1 và x ≠ 2.
\(a,\Leftrightarrow\left(2x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x^3-27-x^3+4x=1\\ \Leftrightarrow4x=28\Leftrightarrow x=7\\ c,\Leftrightarrow4x^2-4x-8=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow2x^2+6x+x+3=0\\ \Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
A) -2x(3x+2)(3x-2)+5(x+2)2 - (x-1)(2x+1)(2x+1)
= -2x(9x2-4)+5(x2+4x+4) - (x-1)(4x2-1)
= -18x3+8x+5x2+20x+20-(4x3-x-4x2+1)
= -18x3+5x2+28x+20-4x3+x+4x2+1
= -22x3+9x2+29x+21
B) (7x-8)(7x+8)-10(2x+3)2+5x(3x-2)2-4x(x-5)2
= 49x2 - 64 -10(4x2+ 12x + 3) + 5x(9x2 - 12x +4) - 4x(x2 - 10x +25)
= 49x2 - 64 -40x2 - 120x - 30 + 45x3 - 60x2 - 20x - 4x3 + 40x2 -100x
= 41x3 -11x2 -240x -94
C) \(\left(x^2-3\right)\left(x^2+3\right)-5x^2\left(x+1\right)^2-\left(x^2-3x\right)\left(x^2-2x\right)+4x\left(x+2\right)^2\)
\(\left(x^4-9\right)-5x^2\left(x^2+2x+1\right)-\left(x^4-2x^3-3x^3+6x^2\right)+4x\left(x^2+4x+4\right)\)
\(x^4-9-5x^4-10x^3-5x^2-x^4+5x^3-6x^2+4x^3+16x^2+16x\)
\(-5x^4-x^3+5x^2+20x-9\)
D) \(-6x^2\left(x+5\right)^2-\left(x-3\right)^2+\left(x^2-2\right)\left(2x^2+1\right)-4x^2\left(3x-4\right)^2\)
\(-6x^2\left(x^2+10x+25\right)-\left(x^2-6x+9\right)+2x^4-3x^2-2-4x^2\left(9x^2-24x+16\right)\)
\(-6x^4-60x^3+150x^2-x^2+6x-9+2x^4-3x^2-2-36x^4+96x^3-64x^2\)
\(-40x^4+36x^3+82x^2+6x-11\)
\(a,=6x^3y-9xy^2z+3x^4y\\ c,=\left(2x+3-2x+3\right)^2+xy=81+xy\\ d,=\left(2x+1\right)^2:\left(2x+1\right)=2x+1\)
\(\Leftrightarrow\left(2x^2-x-1\right)^2-3=4x^2-2x-2+4\)
\(\Leftrightarrow\left(2x^2-x-1\right)^2-2\left(2x^2-x-1\right)-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x-1=1+2\sqrt{2}\\2x^2-x-1=1-2\sqrt{2}\end{matrix}\right.\Leftrightarrow x\in\left\{1.82;-1.32\right\}\)