Tổng ba số là -84, tỉ số giữa số thứ nhất và số thứ hai là 1/2 , tỉ số giữa số thứ hai và số thứ ba là 1/2, tìm ba số đó
ai nhanh mik tik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số giữa số thứ 3 và số thứ nhất là:
\(\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)
Gọi 3 số lần lượt là: x ; \(\frac{1}{2}x\); \(\frac{1}{4}x\)
Ta có:
x + \(\frac{1}{2}x+\frac{1}{4}x=-84\)
\(\Rightarrow1x+\frac{1}{2}x+\frac{1}{4}x=-84\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{4}\right)x=-84\)
\(\Rightarrow\left(\frac{4}{4}+\frac{2}{4}+\frac{1}{4}\right)x=-84\)
\(\Rightarrow\frac{7}{4}x=-84\)
\(\Rightarrow x=\left(-84\right):\frac{7}{4}\)
\(\Rightarrow x=-48\)
Vậy số thứ nhất là: -48
Số thứ 2 là:
(-48) . \(\frac{1}{2}=-24\)
Số thứ 3 là:
(-48) . \(\frac{1}{4}=-12\)
Đ/S: Số thứ nhất: -48
Số thứ hai: -24
Số thứ ba: -12
Gọi số thứ nhất là a; số thứ hai là b ; số thứ ba là c . Ta có :
\(\hept{\begin{cases}\frac{a}{b}=\frac{1}{2}\\\frac{b}{c}=\frac{1}{2}\\a+b+c=-84\end{cases}}\)\(\Rightarrow\)\(a=2x\)và \(b=2y=4x\)
Vì \(x+2x+4x=-84\)
Nên \(\Rightarrow\hept{\begin{cases}a=-12\\b=2x=-24\\c=4x=-48\end{cases}}\)
Vậy số thứ nhất = -12 ; số thứ hai = -24 và số thứ ba bằng -48
Gọi các số đó lần lượt là a ; b ; c. Ta có:
\(\hept{\begin{cases}\frac{a}{b}=\frac{1}{2}\\\frac{b}{c}=\frac{1}{2}\\a+b+c=-84\end{cases}}\)
= > a = 2x và b = 2y = 4x
Vì x + 2x = 4x = - 84
Nên = >\(\hept{\begin{cases}a=-12\\b=2x=-24\\c=4x=-48\end{cases}}\)
Vậy...............
Theo đề ta có:
Tổng 3 số bằng :
a + b + c = -84 (1)
Tỉ số giữa số thứ nhất và số thứ hai bằng 1/2 và tỉ số giữa số thứ hai và số thứ ba cũng bằng 1/2
=> a/b = b/c = 1/2 (2)
Từ (1) và (2) giải hệ ta có
a = -12 ; b= -24 ; c = -48
Gọi ba số thỏa mãn đề bài là: \(x\); y; z
Theo bài ra ta có:
\(x+y+z\) = -84 (1)
\(\dfrac{x}{y}\) = \(\dfrac{1}{2}\) ⇒ \(x\) = \(\dfrac{1}{2}y\); \(\dfrac{y}{z}\) = \(\dfrac{1}{2}\) ⇒ \(z\) = 2\(y\)
thay \(x\) = \(\dfrac{1}{2}y\) và z = 2y vào biểu thức (1) ta có:
\(\dfrac{1}{2}\)y + y + 2y = -84 ⇒ \(\dfrac{7}{2}y\) = -84⇒ y = -84: \(\dfrac{7}{2}\) = -24; \(x\) =-24 \(\times\) \(\dfrac{1}{2}\) = -12
z = -24 \(\times\) 2 = -48
Kết luận: (\(x\);y;z) =(-12; -24; -48)
Gọi 3 số đó lần lượt là a,b,c
Theo đề ta có:
Tổng 3 số bằng -84
\(\Rightarrow a+b+c=-84\left(1\right)\)
Tỉ số giữa số thứ nhất và số thứ hai bằng 1/2 và tỉ số giữa số thứ hai và số thứ ba cũng bằng 1/2
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{1}{2}\left(2\right)\)
Từ (1) và (2) ta có hệ \(\begin{cases}a+b+c=-84\left(1\right)\\\frac{a}{b}=\frac{b}{c}=\frac{1}{2}\end{cases}\)\(\Leftrightarrow\begin{cases}a=-12\\b=-24\\c=-48\end{cases}\left(tm\right)\)
GỌi số thứ nhất là x;số thứ 2 là y;số thứ 3 là z
Theo bài ra ta có:
\(x+y+z=84\)
\(\frac{y}{z}=\frac{1}{2}\Rightarrow y=\frac{z}{2}\)(1)
\(\frac{x}{y}=\frac{1}{2}\Rightarrow2x=y\)(2)
Từ (1)và (2)=>\(2x=y=\frac{z}{2}\Rightarrow x=\frac{y}{2}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ;ta được:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{1+2+4}=\frac{84}{7}=12\)
\(\Rightarrow\hept{\begin{cases}x=12\\y=12.2=24\\z=12.4=48\end{cases}}\)
Vậy 3 số cần tìm là:12;24;48
Gọi số thứ nhất là a
=> Số thứ hai là 3/2a
Số thứ 3 là 9/4a
Vì tổng các luỹ thừa bậc 3 của 3 số nguyên là -1009, nên ta có:
\(a^3+\left(\dfrac{3}{2}a\right)^3+\left(\dfrac{9}{4}a\right)^3=-1009\\ \Leftrightarrow a^3+\dfrac{27}{8}a^3+\dfrac{729}{64}a^3=-1009\\ \Leftrightarrow\dfrac{1009}{64}a^3=-1009\\ \Leftrightarrow\dfrac{a^3}{64}=-1\\ \Leftrightarrow\left(\dfrac{a}{4}\right)^3=\left(-1\right)^3=-1\\ \Leftrightarrow\dfrac{a}{4}=-1\\ \Leftrightarrow a=-4\)
Vậy số thứ nhất là 4, số thứ hai là 6 và số thứ ba là 9.
gọi số thứ nhất, thứ hai, thứ ba lần lượt là: a,b,c
Ta có: \(\frac{a}{b}=\frac{1}{2}\Rightarrow a=\frac{b}{2}\)
\(\frac{b}{c}=\frac{1}{2}\Rightarrow c=2b\)
mà a + b + c = -84
nên \(\frac{b}{2}+b+2b=-84\)
\(\frac{b}{2}+\frac{2b}{2}+\frac{4b}{2}=84\)
\(\frac{b+2b+4b}{2}=-84\Rightarrow\frac{7b}{2}=-84\)
do đó \(7b=-84\cdot2=-168\Rightarrow b=-168:7=-24\)
vậy \(a=\frac{b}{2}=\frac{-24}{2}=-12;c=2b=2\cdot\left(-24\right)=-48\)