\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)
=) Giai Pt tren !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇔ \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{4}{x^2+8x+12}=\dfrac{1}{8}\)
⇔ \(x^2+8x+12=32\)
⇔ \(x^2+8x-20=0\)
⇔ \(\left(x-2\right)\left(x+10\right)=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
Ta có : 1+\(\dfrac{1}{x+2}\) = \(\dfrac{12}{8-x^3}\) (đkxđ x\(\ne\pm2\) )
\(\Leftrightarrow\) \(\dfrac{1}{x+2}\) = \(\dfrac{12}{8-x^3}-1\)
\(\Leftrightarrow\)\(\dfrac{1}{x+2}=\dfrac{12-\left(8-x^3\right)}{8-x^3}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{x^3+4}{8-x^3}\)
\(\Leftrightarrow8-x^3=\left(x+2\right)\left(x^3+4\right)\)
\(\Leftrightarrow8-x^3=x^4+4x+2x^3+8\)
\(\Leftrightarrow-x^3-x^4-4x-2x^3=8-8\)
\(\Leftrightarrow-x^4-3x^3-4x=0\)
\(\Leftrightarrow-x\left(x^3+3x^2+4\right)=0\)
\(\Rightarrow-x=0\)\(\Rightarrow x=0\) (TM x\(\ne\pm2\))
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
ĐKXĐ x≠3 ; x≠-3
\(\dfrac{2x-1}{x+3}=\dfrac{2x+1}{x-3}\)
=> (2x-1)(x-3)=(2x+1)(x+3)
⇔2x2-6x-x+3=2x2+6x+x+3
⇔2x2-2x2-7x-6x=3-3
⇔ -13x=0
⇔x=0 (tm)
vậy phương trình trên có tập no S={0}
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
Pt trên có MSC là \(\left(x-1\right)\left(x^2+x+1\right)\)
Quy đồng mẫu số :
\(\dfrac{1}{x-1}+\dfrac{7x-10}{x^3-1}-\dfrac{3}{x^2+x+1}=0\)
( ĐKXĐ \(x\ne1\))
\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{x^3-1}-\dfrac{3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+x+1+7x-10-3x+3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\) \(\dfrac{x^2+5x-6}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\left(KTMĐK\right)\\x=-6\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{-6\right\}\)
ĐKXĐ: \(x\ne1\); \(x\ne-1\)
\(\dfrac{1}{x-1}+\dfrac{7x-10}{x^3-1}-\dfrac{3}{x^2+x+1}=0\)\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Rightarrow x^2+x+1+7x-10-3x+3=0\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow x-1=0\) ; \(x+6=0\)
+) \(x-1=0\)
\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)
+) \(x+6=0\)
\(\Leftrightarrow x=-6\) (Thỏa mãn ĐKXĐ)
Tập nghiệm: \(S=\left\{-6\right\}\)
với x>0 thì pt luôn xác định.
\(\Rightarrow\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}=\dfrac{12}{x^3+8}\)
\(\Leftrightarrow x^3+8+x^2-2x+4=12\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(x\left(x^2+x-2\right)=0\Rightarrow x=0\) hoặc \(x^2+x-2=0\)
x=0 hoac (x\(^2\)-1) +(x-1) =0
x=0 hoặc (x-1)(x+2)=0
x=0 hoax x=1 hoặc x=2 vỉ x>0 nên pt có 2 nghiệm là x=1 , x=2.
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne0\end{matrix}\right.\)
\(\dfrac{x-1}{x+1}-\dfrac{1}{x}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow\dfrac{x\left(x-1\right)}{x\left(x+1\right)}-\dfrac{\left(x+1\right)}{x\left(x+1\right)}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow\dfrac{x^2-x-x-1}{x\left(x+1\right)}=\dfrac{-1}{x\left(x+1\right)}\\ \Leftrightarrow x^2-2x-1=-1\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\) ( ĐK : \(x\ne-2\) )
\(\Leftrightarrow\dfrac{12}{x^3+2^3}=1+\dfrac{1}{x+2}\)
\(\Leftrightarrow\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}+\dfrac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow12=\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4\)
\(\Leftrightarrow x^3+8+x^2-2x+4=12\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=1\left(N\right)\\x=-2\left(L\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}\)
Thank you ! <3 !! :))