\(1+\dfrac{1}{x+2}=\dfrac{12}{8-x^3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

Ta có : 1+\(\dfrac{1}{x+2}\) = \(\dfrac{12}{8-x^3}\) (đkxđ x\(\ne\pm2\) )

\(\Leftrightarrow\) \(\dfrac{1}{x+2}\) = \(\dfrac{12}{8-x^3}-1\)

\(\Leftrightarrow\)\(\dfrac{1}{x+2}=\dfrac{12-\left(8-x^3\right)}{8-x^3}\)

\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{x^3+4}{8-x^3}\)

\(\Leftrightarrow8-x^3=\left(x+2\right)\left(x^3+4\right)\)

\(\Leftrightarrow8-x^3=x^4+4x+2x^3+8\)

\(\Leftrightarrow-x^3-x^4-4x-2x^3=8-8\)

\(\Leftrightarrow-x^4-3x^3-4x=0\)

\(\Leftrightarrow-x\left(x^3+3x^2+4\right)=0\)

\(\Rightarrow-x=0\)\(\Rightarrow x=0\) (TM x\(\ne\pm2\))

1 tháng 5 2018

a) \(\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(x^2+2x+1-x^2+2x-1=16\)

=>4x=16=>x=4

b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)

=>\(\dfrac{12}{x^2-4}-\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\dfrac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\)

=>\(12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)=0\)

=>\(12-x^2-3x-2+x^2+5x-14=0\)

=>2x-4=0=>2x=4=>x=2

c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)

=>\(\dfrac{12}{8+x^3}=\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}\)

=>\(12=x^3+8+x^2-2x+4\)

=>\(x^3+x^2-2x=0\)

=>\(x^3-x+x^2-x=0\)

1 tháng 5 2018

c)=>\(x\left(x^2-1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+2\right)=0\)

=>x=?

21 tháng 1 2018

a) \(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

\(\Leftrightarrow x=5\)

b) \(\dfrac{x+4}{2000}+\dfrac{x+8}{1996}=\dfrac{x+12}{1992}+\dfrac{x+16}{1988}\)

\(\Leftrightarrow\dfrac{x+4}{2000}+1+\dfrac{x+8}{1996}+1=\dfrac{x+12}{1992}+1+\dfrac{x+16}{1988}+1\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{1996}-\dfrac{x+2004}{1992}-\dfrac{x+2004}{1988}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\right)=0\)

\(\Leftrightarrow x+2004=0\)(vì \(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\ne0\))

\(\Leftrightarrow x=-2004\)

22 tháng 1 2018

c.ơn.mik lm đc r nha

8 tháng 2 2018

a.

\(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+3}{4}=3-\dfrac{x+2}{3}\)

\(\Leftrightarrow\dfrac{\left(x+1\right).6}{12}+\dfrac{\left(x+3\right).3}{12}=\dfrac{36}{12}-\dfrac{\left(x+2\right).4}{12}\)

\(\Leftrightarrow6x+6+3x+9=36-4x-8\)

\(\Leftrightarrow9x+15=28-4x\)

\(\Leftrightarrow9x+4x=28-15\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

8 tháng 2 2018

a) \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)+3\left(x+3\right)}{12}=\dfrac{36-4\left(x+2\right)}{12}\)

\(\Leftrightarrow6\left(x+1\right)+3\left(x+3\right)=36-4\left(x+2\right)\)

\(\Leftrightarrow6x+6+3x+9=36-4x-8\)

\(\Leftrightarrow9x+15=-4x+28\)

\(\Leftrightarrow9x+4x=28-15\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

Vậy ................................

b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)

=>3x+21=2

=>x=-19/3

d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)

=>8x=8

hay x=1

10 tháng 5 2018

b.\(x^3-16x^2+64x=0\)

=>\(x^3-8x^2-8x^2+64x=0\)

=>\(x^2\left(x-8\right)-8x\left(x-8\right)=0\)

=>\(x\left(x-8\right)\left(x-8\right)=0\)

=>\(x=0\)\(x-8=0\)

=>x=0 và x= 8

Vậy S={0; 8}

10 tháng 5 2018

\(|6x-1|=2x+5\)

-Nếu 6x - 1 \(\ge0\Leftrightarrow x\ge\dfrac{1}{6}\)

\(|6x-1|=2x+5\)

\(\Leftrightarrow6x-1=2x+5\)

\(\Leftrightarrow6x-2x=5+1\)

\(\Leftrightarrow4x=6\)

\(\Leftrightarrow x=\dfrac{3}{2}\) (Loại)

-Nếu 6x-1 < 0 \(\Leftrightarrow x< \dfrac{1}{6}\)

\(|6x-1|=2x+5\)

\(\Leftrightarrow-6x+1=2x+5\)

\(\Leftrightarrow-6x-2x=5-1\)

\(\Leftrightarrow-8x=4\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)(Nhận)

Vậy S={\(-\dfrac{1}{2}\)}

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)