\(9\cdot\left(x-5y\right)^2-16\cdot\left(x+y\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)
\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)
\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)
\(A=2x^4y^4z^2\)
\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)
\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)
\(B=8x^7y^{y^8}z^6\)
Sửa lại đề nha: x+y+z=0
a)
Xét x+y+z=0
(x+y+z)2=02
x2+y2+z2+2xy+2yz+2zx=0
=> x2+y2+z2=-2xy-2yz-2zx
Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)
=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)
Thay x2+y2+z2=-2xy-2yz-2zx vào (1)
=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)
b)
Xét x+y+z=0 ba lần:
- Lần 1:x+y+z=0
<=> x+y=0-z
<=>(x+y)2=(0-z)2
<=>x2+2xy+y2=z2
<=>x2+y2-z2=-2xy(1)
-Lần 2: x+y+z=0
<=> y+z=0-x
<=>(y+z)2=(0-x)2
<=>y2+2yz+z2=x2
<=>y2+z2-x2=-2yz(2)
-Lần 3: x+y+z=0
<=>z+x=0-y
<=>(z+x)2=(0-y)2
<=>z2+2zx+x2=y2
<=> z2+x2-y2=-2zx(3)
Thay (1),(2),(3) vào Q, ta có:
=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)
\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)
Khôi phục các đa thức sau:
1,\(\left(2x-\dfrac{3}{2}y\right)^2=4x^2-6xy+\dfrac{9}{4}y^2\)
2,\(\left(x+2y\right)^3=x^3+6x^2y+12xy^2+8y^3\)
3,\(\left(3x+5y\right)^2=9x^2+30xy+25y^2\)
4,\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=x^3-8y^3\)
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
Giai giup minh
MInh dang can gap