K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Em viết lại đề rõ ràng nha!

21 tháng 9 2020

Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)

<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)

<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)

<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)

<=> \(X^2=8-4\sqrt{2}\)

<=> \(X^2-8=-4\sqrt{2}\)

=> \(X^4-16X+64=32\)

<=> \(X^4-16X^2+32=0\)

Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)

1 tháng 8 2023

Em phải viết bằng công thức toán học biểu tượng \(\Sigma\) góc trái màn hình

Hoặc em viết bằng tay chụp ảnh up lên em nhé

Chứ thế này cô ngồi nãy giờ vẫn không biết chính xác biểu thức em cần rút gọn là như thế nào

Thân mến!

NV
16 tháng 8 2021

\(2\sqrt{6}+\sqrt{3}+4\sqrt{2}+3\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(3\sqrt{2}+3+\sqrt{6}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{18}+\sqrt{9}+\sqrt{6}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{3.6}+\sqrt{3.3}+\sqrt{3.2}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\)

16 tháng 8 2021

Nguyễn Việt Lâm  Anh có cách làm nào khác mà không tách ra như vậy không ạ!

21 tháng 7 2019

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

21 tháng 7 2019

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)