K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

Ta có: \(X=\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)

<=> \(X^2=6-3\sqrt{2+\sqrt{3}}+2+\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)

<= \(X^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{2-\sqrt{3}}\)

<=> \(X^2=8-\sqrt{2}\left(\sqrt{3}+1\right)-\sqrt{6}\left(\sqrt{3}-1\right)\)

<=> \(X^2=8-4\sqrt{2}\)

<=> \(X^2-8=-4\sqrt{2}\)

=> \(X^4-16X+64=32\)

<=> \(X^4-16X^2+32=0\)

Vậy X là nghiệm phương trình \(X^4-16X^2+32=0\)

29 tháng 7 2021

a) \(\left(\sqrt{\dfrac{9}{20}}-\sqrt{\dfrac{1}{2}}\right).\sqrt{2}=\sqrt{\dfrac{9}{20}.2}-\sqrt{\dfrac{1}{2}.2}=\sqrt{\dfrac{9}{10}}-1=\dfrac{3}{\sqrt{10}}-1\)

\(=\dfrac{3\sqrt{10}}{10}-1\)

b) \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\sqrt{3}=\sqrt{12.3}+\sqrt{27.3}-\sqrt{3.3}\)

\(=\sqrt{36}+\sqrt{81}-\sqrt{9}=6+9-3=12\)

c) \(\left(\sqrt{\dfrac{8}{3}}-\sqrt{24}+\sqrt{\dfrac{50}{3}}\right)\sqrt{6}=\sqrt{\dfrac{8}{3}.6}-\sqrt{24.6}+\sqrt{\dfrac{50}{3}.6}\)

\(=\sqrt{16}-\sqrt{144}+\sqrt{100}=4-12+10=2\)

NV
16 tháng 8 2021

\(2\sqrt{6}+\sqrt{3}+4\sqrt{2}+3\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(3\sqrt{2}+3+\sqrt{6}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{18}+\sqrt{9}+\sqrt{6}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\left(\sqrt{3.6}+\sqrt{3.3}+\sqrt{3.2}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\)

16 tháng 8 2021

Nguyễn Việt Lâm  Anh có cách làm nào khác mà không tách ra như vậy không ạ!