tìm Max của Q = 5-3.(2x-1)^2
M= x^2+8/x^2+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
\(\frac{3x+2}{x+4}+\frac{2x+1}{x-2}=5-\frac{x-32}{x^2+2x-8}\)
\(\Leftrightarrow\) \(\frac{\left(3x+2\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}+\frac{\left(2x+1\right)\left(x+4\right)}{\left(x+4\right)\left(x-2\right)}=\frac{5\left(x+4\right)\left(x-2\right)}{\left(x+4\right)\left(x-2\right)}-\frac{x-32}{\left(x+4\right)\left(x-2\right)}\)
\(\Rightarrow\) (3x + 2)(x - 2) + (2x + 1)(x + 4) = 5(x + 4)(x - 2) - x + 32
\(\Leftrightarrow\) 3x2 - 6x + 2x - 4 + 2x2 + 8x + x + 4 = 5x2 - 10x + 20x - 40 - x + 32
\(\Leftrightarrow\) 5x2 + 5x = 5x2 + 9x - 8
\(\Leftrightarrow\) 5x2 + 5x - 5x2 - 9x + 8 = 0
\(\Leftrightarrow\) -4x + 8 = 0
\(\Leftrightarrow\) x - 2 = 0
\(\Leftrightarrow\) x = 2
Vậy S = {2}
\(\frac{x+2m}{x+3}+\frac{x-m}{x-3}=\frac{mx\left(x+1\right)}{x^2-9}\) (đkxđ: x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\frac{\left(x+2m\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x-m\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{mx\left(x+1\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow\) (x + 2m)(x - 3) + (x - m)(x + 3) = mx(x + 1)
\(\Leftrightarrow\) x2 - 3x + 2mx - 6m + x2 + 3x - mx - 3m - mx2 - mx = 0
\(\Leftrightarrow\) (2 - m)x2 - 9m = 0
Thay m = 1 ta được:
(2 - 1)x2 - 9 . 1 = 0
\(\Leftrightarrow\) x2 - 9 = 0
\(\Leftrightarrow\) (x - 3)(x + 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(KTM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)
Vậy S = \(\varnothing\)
Thay m = 2 ta được:
(2 - 2)x2 - 9 . 2 = 0
\(\Leftrightarrow\) -18 = 0
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!!
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
1;\(Q=5-3\left(2x-1\right)^2\)
Có \(3\left(2x-1\right)^2\ge0\)
\(\Rightarrow Q\le5-0=5\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Max Q = 5 <=> x = 1/2
2;\(M=\frac{x^2+8}{x^2+2}=1+\frac{6}{x^2+2}\)
Để M đạt GTLN \(\Rightarrow\frac{6}{x^2+2}\)phải lớn nhất
\(\Rightarrow x^2+2\)phải đạt GTNN
Mà \(x^2+2\ge2\Leftrightarrow x=0\)
Vậy \(M\ge1+\frac{6}{2}=1+3=4\)(x = 0)