K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

a,

*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)

\(P(x)=-3x^2+7x-x^3-1\)

\(P(x)=-x^3-3x^2+7x-1\)

* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)

\(Q(x)=3x^4-x^2-x^3-2x-1\)

\(Q(x)=3x^4-x^3-x^2-1\)

b, \(M(x)=P(x)-Q(x)\)

\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)

\(M(x)=-2x^2+7x-3x^4\)

28 tháng 4 2015

nghiem chung cua hai da thuc la 1

minh doan day, sai thi thoi

11 tháng 5 2016

ngiem cua 2 da thuc do =2

27 tháng 2 2016

26542315641

6 tháng 4 2017

em vs sap di hoc r

14 tháng 7 2016

a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)

\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)

\(=7x^4-9x^3+\frac{7}{4}x-3\)

\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)

\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)

\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)

b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)

\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)

\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)

\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)

14 tháng 7 2016

c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)

\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)

f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)

\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)

21 tháng 4 2019

a) \(A+B=2x^3+x^2-4x+x^3+3+6x+3x^3-2x+x^2-5\)

                   \(=6x^3+2x^2-2\)

b) \(A-B=\left(2x^3+x^2-4x+x^3+3\right)-\left(6x+3x^3-2x+x^2-5\right)\)

                  \(=-8x+8\)

c) Đặt \(f\left(x\right)=-8x+8\)

 Ta có: \(f\left(x\right)=0\Leftrightarrow-8x+8=0\)

                              \(\Leftrightarrow-8x=-8\)

                              \(\Leftrightarrow x=1\)

Vậy \(x=1\)là nghiệm của đa thức f(x).