giải phương trình
\(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh/chị tham khảo ở đây nhé:
(4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> (4x - 1)²(x² + 1) = [ 2(x² + 1) + 2x - 1 ]²
<=> (16x² - 8x + 1)(x² + 1) = 4(x² + 1)² + 4x² + 1 + 8x(x² + 1) - 4(x² + 1) - 4x
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4(x^4 + 2x² + 1) + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4x^4 + 8x² + 4 + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x
<=> 16x^4 - 8x^3 + 17x² - 8x + 1 = 4x^4 + 8x^3 + 8x² + 4x + 1
<=> 12x^4 - 16x^3 + 9x² - 12x = 0
<=> x(12x^3 - 16x² + 9x - 12) = 0
<=> x(12x^3 + 9x - 16x² - 12) = 0
<=> x[ 3x(4x² + 3) - 4(4x² + 3) = 0
<=> x(3x - 4)(4x² + 3) = 0
<=> x = 0
<=> 3x - 4 = 0
<=> 4x² + 3 = 0
<=> x = 0
<=> x = 4/3
<=> x² = -3/4 --> Không có nghiệm vì x² ≥ 0 với mọi x
Thế x = 0 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> -1√1 = 2 - 1
<=> -1 = 1 ( Vô lý loại )
Thế x = 4/3 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> 13/3√25/9 = 2.25/9 + 2.4/3 - 1
<=> 65/9 = 65/9 ( đúng )
Nghiệm là x = 4/3
b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow x^2-6x+9=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)
`a, <=> 5/3 . 3sqrt(x^2+2) + 3/2.2sqrt(x^2+2)-7sqrt6=sqrt(x^2+2)`
`= (5+3-1)sqrt(x^2+2)=7sqrt6`
`<=> 7sqrt(x^2+2)=7sqrt6`.
`<=> x^2+2=36`.
`<=> x^2=34`.
`<=> x=+-sqrt(34)`.
Vậy...
`b, sqrt(4x^2-12x+9)-6=0`
`<=> |2x-3|=6`.
`@ x >=3/2 <=> 2x-3=6.`
`<=> x=9/2 (tm)`.
`@x <3/2 <=> 3-2x=6`
`<=> 2x=-3`
`<=> x=-3/2.`
Vậy...
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
\(\sqrt{x+8}+\frac{9}{\sqrt{x+8}}=6\sqrt{x}\) ( ĐK : \(x\ge0\) )
\(\Leftrightarrow\frac{x+8+9x}{\sqrt{x+8}}=\frac{6\sqrt{x\left(x+8\right)}}{\sqrt{x+8}}\)
\(\Leftrightarrow5x+4=3\sqrt{x\left(x+8\right)}\)
\(\Leftrightarrow25x^2+40x+16=9x^2+72x\)
\(\Leftrightarrow16x^2-32x+16=0\)
\(\Leftrightarrow16\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy...
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)
\(\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow x+3=9\)
hay x=6
b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)
\(ĐK:x>-8\)
Nhân cả 2 vế của pt với \(\sqrt{x+8}\)
\(PT\Leftrightarrow\left(x+8\right)+9x-6\sqrt{x}.\sqrt{x+8}=0\)
\(\Leftrightarrow\left(x+8\right)-2\sqrt{9x}.\sqrt{x+8}+9x=0\)
\(\Leftrightarrow\left(\sqrt{x+8}-3x\right)^2=0\)
\(\Leftrightarrow\sqrt{x+8}-3x=0\)
\(\Leftrightarrow\sqrt{x+8}=3x\)
\(\Rightarrow\hept{\begin{cases}x\ge0\\x+8=9x^2\end{cases}\Rightarrow x=1}\)
Vậy pt có nghiệm x=1