Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh/chị tham khảo ở đây nhé:
(4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> (4x - 1)²(x² + 1) = [ 2(x² + 1) + 2x - 1 ]²
<=> (16x² - 8x + 1)(x² + 1) = 4(x² + 1)² + 4x² + 1 + 8x(x² + 1) - 4(x² + 1) - 4x
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4(x^4 + 2x² + 1) + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x
<=> 16x^4 + 16x² - 8x^3 - 8x + x² + 1 = 4x^4 + 8x² + 4 + 4x² + 1 + 8x^3 + 8x - 4x² - 4 - 4x
<=> 16x^4 - 8x^3 + 17x² - 8x + 1 = 4x^4 + 8x^3 + 8x² + 4x + 1
<=> 12x^4 - 16x^3 + 9x² - 12x = 0
<=> x(12x^3 - 16x² + 9x - 12) = 0
<=> x(12x^3 + 9x - 16x² - 12) = 0
<=> x[ 3x(4x² + 3) - 4(4x² + 3) = 0
<=> x(3x - 4)(4x² + 3) = 0
<=> x = 0
<=> 3x - 4 = 0
<=> 4x² + 3 = 0
<=> x = 0
<=> x = 4/3
<=> x² = -3/4 --> Không có nghiệm vì x² ≥ 0 với mọi x
Thế x = 0 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> -1√1 = 2 - 1
<=> -1 = 1 ( Vô lý loại )
Thế x = 4/3 vào (4x - 1)√(x² + 1) = 2(x² + 1) + 2x - 1
<=> 13/3√25/9 = 2.25/9 + 2.4/3 - 1
<=> 65/9 = 65/9 ( đúng )
Nghiệm là x = 4/3
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
Đặt \(x-3=t\) pt thành
\(\sqrt{t\left(t-6\right)}-t=0\)
\(\Leftrightarrow t^2-6t=t^2\)
\(\Leftrightarrow t=0\)\(\Rightarrow x-3=0\Leftrightarrow x=3\)
b)\(\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
Đặt \(\sqrt{x^2-4}=t\) pt thành
\(t=t^2\Rightarrow t\left(1-t\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}t=1\\t=0\end{array}\right.\).
Với \(t=0\Rightarrow\sqrt{x^2-4}=0\Rightarrow x=\pm2\)
Với \(t=1\Rightarrow\sqrt{x^2-4}=1\)\(\Rightarrow x=\pm\sqrt{5}\)
a.
\(DK:49-28x-4x^2\ge0\)
PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)
\(\Leftrightarrow49-28x-4x^2=25\)
\(\Leftrightarrow4x^2+28x-24=0\)
\(\Leftrightarrow x^2+7x-6=0\)
Ta co:
\(\Delta=7^2-4.1.\left(-6\right)=73>0\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)
Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)
ĐK : \(x\ge0\)
Áp dụng bđt cauchy ta có :
\(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}\ge2\sqrt{\sqrt{x+8}.\frac{9x}{\sqrt{x+8}}}=2.3\sqrt{x}=6\sqrt{x}\)
\(\Rightarrow VT=\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}\ge6\sqrt{x}-6\sqrt{x}=0=VP\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+8}=\frac{9x}{\sqrt{x+8}}\Leftrightarrow\sqrt{x+8}^2=9x\Leftrightarrow x+8=9x\Rightarrow x=1\)(TM)
Vậy nghiệm PT là S = {1}
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
\(ĐK:x>-8\)
Nhân cả 2 vế của pt với \(\sqrt{x+8}\)
\(PT\Leftrightarrow\left(x+8\right)+9x-6\sqrt{x}.\sqrt{x+8}=0\)
\(\Leftrightarrow\left(x+8\right)-2\sqrt{9x}.\sqrt{x+8}+9x=0\)
\(\Leftrightarrow\left(\sqrt{x+8}-3x\right)^2=0\)
\(\Leftrightarrow\sqrt{x+8}-3x=0\)
\(\Leftrightarrow\sqrt{x+8}=3x\)
\(\Rightarrow\hept{\begin{cases}x\ge0\\x+8=9x^2\end{cases}\Rightarrow x=1}\)
Vậy pt có nghiệm x=1