Cho hinh thoi ABCD gọi MNPQ là trung điểm theo thứ tự của các cạnh ABđến AD cm MNPQ là hcn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMNQ có
A là trung điểm của MN
D là trung điểm của MQ
Do đó: AD là đường trung bình của ΔMNQ
Suy ra: AD//NQ và AD=NQ/2(1)
Xét ΔNPQ có
B là trung điểm của NP
C là trung điểm của QP
Do đó: BC là đường trung bình của ΔNPQ
Suy ra: BC//NQ và BC=NQ/2(2)
Từ (1) và (2) suy ra AD//BC và AD=BC
Xét ΔMNP có
A là trung điểm của MN
B là trung điểm của NP
Do đó: AB là đường trung bình của ΔMNP
Suy ra: AB=MP/2=NQ/2(3)
Từ (1) và (3) suy ra AD=AB
Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
mà AB=AD
nên ABCD là hình thoi
a / hình bình hành
b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD
c/hình vuông
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
a) Xét tam giác \(ABC\):
\(M,N\)lần lượt là trung điểm của \(AB,AC\)nên \(MN\)là đường trung bình của tam giác \(ABC\)
suy ra \(MN=\frac{1}{2}BC,MN//BC\).
Xét tam giác \(DBC\):
\(P,Q\)lần lượt là trung điểm của \(DC,DB\)nên \(PQ\)là đường trung bình của tam giác \(DBC\)
suy ra \(PQ=\frac{1}{2}BC,PQ//BC\).
Suy ra \(PQ=MN,PQ//MN\)
nên \(MNPQ\)là hình bình hành.
b) - \(MNPQ\)là hình thoi.
\(MNPQ\)là hình thoi suy ra \(MN=NP\).
Tương tự ý a) ta cũng chứng minh được \(NP=\frac{1}{2}AD\)
do đó suy ra \(AD=BC\)nên \(ABCD\)là hình thang cân.
- \(MNPQ\)là hình chữ nhật.
\(MNPQ\)là hình chữ nhật suy ra \(MN\perp PQ\).
Chứng minh tương tự ý a) ta cũng có \(NP//AD\)
suy ra \(BC\perp AD\).
- \(MNPQ\)là hình vuông.
\(MNPQ\)là hình vuông khi vừa là hình thoi vừa là hình chữ nhật.
a) Nối A với C
Xét tam giác ABC có: M là trung điểm của AB
N là trung điểm của BC
=> MN là đường trung bình của tam giác ABC
=> MN = 1/2 AC (1)
Chứng minh tương tự, ta được: PQ là đường trung bình của tam giác ADC
=> PQ = 1/2 AC (2)
Từ (1)(2) => MN = PQ ( cùng bằng 1/2 AC)
b) Ta có: MN = PQ = MQ = PN (cùng = 1/2 AC = 1/2 BD)
=> MNPQ là hình thoi ( 3)
Mặt khác: AC vuông góc với BD (ABCD là hình thoi)
MN song song với AC
=> Mn vuông góc với BD
Và BD song song với NP
=> MN vuông góc với NP
=> góc MNP = 90 độ (4)
Từ (3) và (4) => MNPQ là hình vuông
Nối AC,BD
a) Ta có:
M là TĐ của AB (gt) ; N là TĐ của BC (gt) \(\Rightarrow\)MN là đường trung bình của tam giác ABC \(\Rightarrow\)MN =\(\frac{1}{2}AC\), MN song song với AC
Tương tự: \(PQ=\frac{1}{2}AC\); PQ song song với AC ; MQ song song với BD, NP song song với BD
nên MN=PQ (đpcm)
b) Theo câu a) ta có :
MN song song với PQ ,MQ song song với NP nên tứ giác MNPQ là hình bình hành (1)
Lại có :AC vuông góc với BD nên MN vuông góc với MQ hay góc M = 90 độ (2)
Từ (1) và (2) tứ giác MNPQ là hình chữ nhật
A M B D Q N C P
a) \(\Delta ABC\)có :
MA = MB ( gt )
NB = NC ( gt )
=> MN là đường trung bình của \(\Delta ABC\)
=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)
CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)
=> MN // PQ ; MN = PQ .
=> Tứ giác MNPQ là hình bình hành .
b) Theo câu a) , Ta có :
MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)
+) Hình bình hành MNPQ là hình thoi
=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\))
=> ABCD là hình thang cân .
+) Hình bình hành MNPQ là hình chữ nhật
\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD )
=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .
+) Hình bình hành MNPQ là hình vuông
\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)
=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau .
Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBDcó CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//PN và MQ=PN
=>MNPQ là hình bình hành