Cho tam giác ABC vuông tại A có AH là đường cao, AH=6, CH-BH=9. Tính BH, CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
VẼ HÌNH HƠI XẤU THÔNG CẢM NHA
áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)
áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)
thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)
Em mới học lớp 7 nên có j thông cảm nha
Ta có:Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền,ta có:
\(BH.BC=AB^2=6^2=36\)
Mà BC=BH+HC=BH+9
\(\Rightarrow BH\left(BH+9\right)=36\Rightarrow BH^2+9.BH=36\Rightarrow BH^2+2.\frac{9}{2}.BH+\left(\frac{9}{2}\right)^2=36+\frac{81}{4}\)
\(\Rightarrow\left(BH+\frac{9}{2}\right)^2=\frac{225}{4}=\left(\frac{15}{2}\right)^2\)
\(\Rightarrow BH+\frac{9}{2}=\frac{15}{2}\left(BH+\frac{9}{2}>0\right)\)
\(\Rightarrow BH=3cm\)
Ta có: BC=BH+CH
nên BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
Câu 2:
AB/AC=5/6
=>HB/HC=25/36
=>HB/25=HC/36=k
=>HB=25k; HC=36k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>900k^2=900
=>k=1
=>HB=25cm; HC=36cm
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow AH=\sqrt{BH.HC}=\sqrt{7,2.12,8}=9,6\left(cm\right)\)
Ta có: \(BC=BH+HC=7,2+12,8=20\left(cm\right)\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=HC.BC\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH.BC}=\sqrt{7,2.20}=12\left(cm\right)\\AC=\sqrt{CH.BC}=\sqrt{12,8.20}=16\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có AHlà đường cao
nên AH^2=HB*HC=12*4=48
=>AH=4*căn 3
Xét ΔABH vuông tại H có tan ABH=AH/HB=căn 3
=>góc ABH=60 độ
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$BH.CH=AH^2=36(*)$
Mà $CH-BH=9\Rightarrow CH=BH+9$. Thay vô $(*)$ thì:
$BH(BH+9)=36$
$\Leftrightarrow BH^2+9BH-36=0$
$\Leftrightarrow (BH-3)(BH+12)=0$
Vì $BH>0$ nên $BH=3$
$CH=BH+9=3+9=12$
Hình vẽ: