K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có AHlà đường cao

nên AH^2=HB*HC=12*4=48

=>AH=4*căn 3

Xét ΔABH vuông tại H có tan ABH=AH/HB=căn 3

=>góc ABH=60 độ

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

Áp dụng hệ thức lượng trong tam giác vuông:

$BH.CH=AH^2=36(*)$

Mà $CH-BH=9\Rightarrow CH=BH+9$. Thay vô $(*)$ thì:

$BH(BH+9)=36$

$\Leftrightarrow BH^2+9BH-36=0$

$\Leftrightarrow (BH-3)(BH+12)=0$

Vì $BH>0$ nên $BH=3$ 

$CH=BH+9=3+9=12$ 

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Hình vẽ:

22 tháng 9 2015

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

5 tháng 7 2021

Ta có \(\Delta HBA\approx\Delta HAC\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)

=> HB.HC = HA2

=> 2HB.HC = \(\frac{288}{25}\)

mà HB + HC = BC =  5 (1)

=> HB2 + HC2 + 2HB.HC = 25

<=> HB2 + HC2 - 2.HB.HC = 1,96

<=> HB - HC = 1,4 (2)

Từ (1) và (2) => HB = 3,2 ; HC = 1,8

5 tháng 7 2021

Mình hỏi tý nè :

Sao cái tam giác ABC vuông tại A rồi thì AB là chiều cao chứ ạ. Hì hì mình nói có gì sai mọi người bảo mình nha.

Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:

AB^2+AB^2=BC^2

Hay: 12^2+5^2=169=BC^2 => BC=13cm

ÁP dụng hệ thức ta có: +) AB^2=BH.BC

Hay: BH=AB^2:BC=144:13 =144/13(cm)

Ta có CH=BC-BH=13-144/13=25/13(cm)

DO KHÔNG RÕ CÂU HỎI NÊN MÌNH CŨNG KO CHẮC LẮM...

HỌC TỐT!!!

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi