K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Hãy tích cho tui đi

Nếu bạn tích tui

Tui không tích lại đâu

THANKS

4 tháng 8 2018

\(a.\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4}\)\(;....;\frac{1}{10^2}< \frac{1}{9.10}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{9}-\frac{1}{10}\)

      \(=1-\frac{1}{10}=\frac{9}{10}\) mà \(\frac{9}{10}< 1\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)\(< 1\)\(\left(ĐPCM\right)\)

A=1/2^2+1/3^2+...+1/10^2

=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

18 tháng 3 2021

i

help me

17 tháng 6 2021
Kết bạn với mình thì mk mới trả lời
24 tháng 3 2018

Tra lời:

Ta có:

1/101➢1/300+1/102➢1/300+1/103➢1/300+1/104➢1/300+.....+1/299➢1/300

=1/101+1/102+1/103+...1/299➢199/300

=1/101+1/102+1/103+...1/299+1/300➢199/300+1/300

=200/300=2/3.

Note: ➢ là dau lớn do nhe. Nho tick cho minh nha😊😉

28 tháng 6 2016

\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\). . . . \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{2}{3}\)\(\ge\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(+\)\(\frac{1}{300}\)\(=\)\(\frac{200}{300}\)\(=\)\(\frac{2}{3}\)

do \(\frac{1}{101}\)..... \(\frac{1}{300}\)có 200 số

\(\Rightarrow\)\(\frac{1}{101}\)\(+\)\(\frac{1}{102}\)\(+\)..... \(+\)\(\frac{1}{299}\)\(+\)\(\frac{1}{300}\)\(\ge\)\(\frac{1}{300}\)\(\times\)200

\(\ge\)\(\frac{2}{3}\)

28 tháng 4 2018

a/  Tinh giá trị:

\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\) 

b/  Chứng minh:

\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\) 

-  Với mọi số tự nhiên n khác không thì luôn có:   \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:

 \(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\) 

   \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\) 

c/  Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\) 

    \(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

   Vậy:            \(F>\frac{7}{12}\) .