\(E=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

ta có 

\(\frac{1}{300}< \frac{1}{101}\)\(\frac{1}{300}< \frac{1}{102}\)\(\frac{1}{300}< \frac{1}{102}\)....\(\frac{1}{300}< \frac{1}{299}\)

\(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}< \frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)

\(\frac{200}{300}< \frac{1}{101}+\frac{1}{102}+...+\text{​​}\text{​​}\)

rút gọn là xong

10 tháng 8 2016

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>200.\frac{1}{300}\)

                                                               \(>\frac{2}{3}\)

10 tháng 8 2016

là sao ??

28 tháng 2 2019

Ta có

\(\frac{1}{101}>\frac{2}{3}\)

\(\frac{1}{102}>\frac{2}{3}\)

.

.

.

\(\frac{1}{300}>\frac{2}{3}\)

Vậy \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)

15 tháng 3 2015

Đặt A=1/101+1/102+1/103+...+1/300

vì 1/101>1/102>1/103>...>1/300

=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!) 

=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100

=> A > 1/2+1/3

=> A > 5/6 

Mà 5/6>2/3

=> A > 2/3

Vậy 1/101+1/102+1/103+...+1/300 >2/3

31 tháng 3 2015

Vì : 1/101 > 1/300 ;  1/102 > 1/300 .... ; 1/299 >1/300 ;    Do 1/101.....1/300 có 200 số 

=>1/101+1/102+....+1/299+1/300 > 1/300 x 200

                                                 >  2/3

                                                

2 tháng 4 2016

Đặt A=1/101+1/102+1/103+...+1/300

vì 1/101>1/102>1/103>...>1/300

=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!) 

=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100

=> A > 1/2+1/3

=> A > 5/6 

Mà 5/6>2/3

=> A > 2/3

Vậy 1/101+1/102+1/103+...+1/300 >2/3

2 tháng 4 2016

Đặt A=1/101+1/102+1/103+...+1/300

vì 1/101>1/102>1/103>...>1/300

=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!) 

=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100

=> A > 1/2+1/3

=> A > 5/6 

Mà 5/6>2/3

=> A > 2/3

Vậy 1/101+1/102+1/103+...+1/300 >2/3

15 tháng 3 2018

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)( có 200 số )

Ta có

\(\frac{1}{101}>\frac{1}{300}\)\(\frac{1}{102}>\frac{1}{300}\); ...;\(\frac{1}{299}>\frac{1}{300}\)

=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)\(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}+\frac{1}{300}\)

=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)\(\frac{1}{300}.200\)

=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)\(\frac{2}{3}\)( dpcm )

15 tháng 3 2018

Ta có\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200.\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\Rightarrowđpcm\)

12 tháng 8 2016

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp