Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>200.\frac{1}{300}\)
\(>\frac{2}{3}\)
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)( có 200 số )
Ta có
\(\frac{1}{101}>\frac{1}{300}\); \(\frac{1}{102}>\frac{1}{300}\); ...;\(\frac{1}{299}>\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}+\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}.200\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{2}{3}\)( dpcm )
Ta có\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200.\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\Rightarrowđpcm\)
Ta có:
\(\frac{1}{101}\)>\(\frac{1}{200}\)
\(\frac{1}{102}\)>\(\frac{1}{200}\)
\(\frac{1}{103}\)>\(\frac{1}{200}\)
...
\(\frac{1}{200}\)=\(\frac{1}{200}\)
\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)
\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)
1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )
1/101+1/102+....+1/200(có 100 số )
Vì 1/101>1/200
1/102>1/100
......
1/199>1/200
1/200=1/200
=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số
=>1/101+1/102+.....+1/200>1/2
Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)
Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên :
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)
ta có
\(\frac{1}{300}< \frac{1}{101}\); \(\frac{1}{300}< \frac{1}{102}\); \(\frac{1}{300}< \frac{1}{102}\)....\(\frac{1}{300}< \frac{1}{299}\)
\(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}< \frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)
\(\frac{200}{300}< \frac{1}{101}+\frac{1}{102}+...+\text{}\text{}\)
rút gọn là xong
Ta đặt \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}\)
Vì \(\frac{1}{101}>\frac{1}{102}>...>\frac{1}{299}>\frac{1}{300}\)
\(\Rightarrow A=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{300}\right)\)
\(\Rightarrow A>\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)
\(\Rightarrow A>\left(\frac{1}{200}\cdot100\right)+\left(\frac{1}{300}\cdot100\right)\)
\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow A>\frac{5}{6}>\frac{2}{3}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}\)>\(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)=\(\frac{1}{2}\)(có 200 c/s\(\frac{1}{200}\))
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{300}\)>\(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\)=\(\frac{2}{3}\)(có 200 c/s \(\frac{1}{300}\))
Vậy \(\frac{1}{101}+\frac{1}{102+}+....+\frac{1}{300}\)>\(\frac{1}{2}+\frac{2}{3}=\frac{2}{3}\) Đpcm
Hok tốt
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Vì : 1/101 > 1/300 ; 1/102 > 1/300 .... ; 1/299 >1/300 ; Do 1/101.....1/300 có 200 số
=>1/101+1/102+....+1/299+1/300 > 1/300 x 200
> 2/3
Ta có
\(\frac{1}{101}>\frac{2}{3}\)
\(\frac{1}{102}>\frac{2}{3}\)
.
.
.
\(\frac{1}{300}>\frac{2}{3}\)
Vậy \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)