Chứng minh rằng : \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{255}+\frac{1}{256}>5.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ,ông không chịu làm thì có ^_^:
Ta có:\(B=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+....+\left(\frac{1}{2^{2014}+1}+....+\frac{1}{2^{2015}}\right)+\frac{1}{2^{2015}+1}+...+\frac{1}{2^{2016}-1}\)
\(>1+\frac{1}{2}+2.\frac{1}{2^2}+2^2.\frac{1}{2^3}+........+2^{2014}.\frac{1}{2^{2015}}\)
\(=1+\frac{1}{2}+\frac{1}{2}+.........+\frac{1}{2}\) (có 2015 phân số \(\frac{1}{2}\))
\(=1+2014.\frac{1}{2}+\frac{1}{2}=1008+\frac{1}{2}>1008\)
\(\frac{1}{M}=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{59.60}{2}}\)
\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}\)
\(\frac{1}{M}=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{60}\right)\)
\(\frac{1}{M}=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)
-theo t đề là M chứ ko phải 1/M
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\)
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>\frac{1\cdot30}{15}\)
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>2\)
Đc lém Min đúng lúc tui đang định đăng câu ó
\(Ta\) \(có\) \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{256}\)
\(Vì\) \(1>\frac{1}{256},\frac{1}{2}>\frac{1}{256},....,\frac{1}{255}>\frac{1}{256},\frac{1}{256}=\frac{1}{256}\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{256}>\frac{1}{256}+\frac{1}{256}+...+\frac{1}{256}\)
\(=\frac{1}{256}.256=1\)\(< 5\)