Tìm x, biết:
\(36-y^2=8\left(x-2010\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)
\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)
Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)
Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)
Bạn xét tiếp nha :))
Ta có: (x - 2010)2 \(\ge\)0 \(\forall\) x <=> 8(x - 2010)2 \(\ge\)0 \(\forall\)x
<=>36 - y2 \(\ge\)0
<=> 36 \(\ge\)y2
<=> y2 \(\le\)36
<=> |y| \(\le\)6
Do y \(\in\)N => 0 \(\le\)y < 6
+) Với y = 0 => 36 - 02 = 8(x - 2010)2
=> 36 = 8(x - 2010)2
=> (x - 2010)2 = 36 : 8 (ko thõa mãn)
+) Với y = 1 => 36 - 12 = 8(x - 2010)2
=> 35 = 8(x - 2010)2
=> (x - 2010)2 = 35 : 8 (ko thõa mãn)
+) Với y = 2 => 36 - 22 = 8(x - 2010)2
=> 32 = 8(x - 2010)2
=> (x - 2010)2 = 32 : 8
=> (x - 2010)2 = 4 = 22
=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)
+) Với y = 3 => 36 - 32 = 8(x - 2010)2
=> (x - 2010)2 = 27 : 8 (ko thõa mãn)
+) Với y = 4 => 36 - 42 = 8(x - 2010)2
=> (x - 2010)2 = 20 : 8 (ko thõa mãn)
+) Với y = 5 => 36 - 52 = 8(x - 2010)2
=> (x - 2010)2 = 11 : 8 (ko thõa mãn)
Vậy ...
Bạn có thể tham khảo nhé !
ta có: 8(x-2010)2+y2=36
Do y2\(\ge\)0\(\Rightarrow\)(x-2010)2\(\le\)\(\dfrac{36}{8}\)
Do đó (x-2010)2 \(\in\) {0;1;4}.
Với (x-2010)2=0.Suy ra x=2010
và y2=36 nên y=6.
Với (x-2010)2=1.suy ra x=2011 và
y2=36-8=28 (loại)
Với (x-2010)2=4.Suy ta x=2012 và
y2=36-32=4.Suy ra y=2
Vậy ta có các cặp (x;y) thuộc N sau
(2010;6) ; (2012;2)
Ta có: \(y^2\ge0\forall y\in Z\)
\(\Rightarrow-y^2\le0\forall y\in Z\)
\(\Rightarrow36-y^2\le36\forall y\in Z\)
mà \(36-y^2=8\left(x-2010\right)^2\) (*)
nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)
\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)
Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\) (1)
Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)
Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)
+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:
\(36-y^2=0\)
\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)
+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)
Khi đó: (*) ⇔ \(36-y^2=8\)
\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)
+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)
Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)
\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)
Vậy ...
đặt 2009-x=a,x-2010=b
suy ra a^2+ab+b^2/a^2-ab+b^2=19/49
suy ra 49(a^2+ab+b^2)=19(a^2-ab+b^2)
49a^2+49ab+49b^2=19a^2-19ab+19b^2
30a^2+68ab+30b^2=0
30a^2+50ab+18ab+30b^2=0
10a(3a+5b)+6b(3a+5b)=0
(3a+5b)(10a+6b)=0
suy ra 3a+5b=0 hoặc 10a+6b=0
thế vào lại rồi tìm x