K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Bài toán yêu cầu tìm nghiệm nguyên phải không bạn?

27 tháng 11 2017

tìm x ạ

12 tháng 1 2020

Tham khảo:

Chúc bạn học tốt!

12 tháng 1 2020

Bạn có thể tham khảo nhé !
Câu hỏi của Kudo shinichi - Toán lớp 7 | Học trực tuyến - Hoc24
21 tháng 7 2018

\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\)

\(\Rightarrow36\ge y^2\)\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)

 Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{36}{8}=\frac{9}{2}\)(loại)

Xét \(y^2=1\Rightarrow8\left(x-2010\right)^2=36-1=35\Rightarrow\left(x-2010\right)^2=\frac{35}{8}\)(loại)

Bạn xét tiếp nha :))

19 tháng 6 2019

Ta có: (x - 2010)2 \(\ge\)\(\forall\) x <=> 8(x - 2010)2 \(\ge\)\(\forall\)x

<=>36 - y2 \(\ge\)0

<=> 36 \(\ge\)y2

<=> y2 \(\le\)36

<=> |y| \(\le\)6

Do y \(\in\)N  => 0 \(\le\)y < 6

+) Với y = 0 => 36 - 02 = 8(x - 2010)2

=> 36 = 8(x - 2010)2

=> (x - 2010)2 = 36 : 8 (ko thõa mãn)

+) Với y = 1 => 36 - 12 = 8(x - 2010)2

=> 35 = 8(x - 2010)2

=> (x - 2010)2 = 35 : 8 (ko thõa mãn)

+) Với y = 2 => 36 - 22 = 8(x - 2010)2

=> 32 = 8(x - 2010)2

=> (x - 2010)2 = 32 : 8

=> (x - 2010)2 = 4 = 22

=> \(\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}}\)

=> \(\orbr{\begin{cases}x=2012\\x=2008\end{cases}}\)

+) Với y = 3 => 36 - 32 = 8(x - 2010)2

=> (x - 2010)2 = 27 : 8 (ko thõa mãn)

+) Với y = 4 => 36 - 42 = 8(x - 2010)2

=> (x - 2010)2 = 20 : 8 (ko thõa mãn)

+) Với y = 5 => 36 - 52 = 8(x - 2010)2

=> (x - 2010)2 = 11 : 8 (ko thõa mãn)

Vậy ...

12 tháng 4 2017

y = 2 ; x = 2012

19 tháng 4 2017

ta có: 8(x-2010)2+y2=36

Do y2\(\ge\)0\(\Rightarrow\)(x-2010)2\(\le\)\(\dfrac{36}{8}\)

Do đó (x-2010)2 \(\in\) {0;1;4}.

Với (x-2010)2=0.Suy ra x=2010

và y2=36 nên y=6.

Với (x-2010)2=1.suy ra x=2011 và

y2=36-8=28 (loại)

Với (x-2010)2=4.Suy ta x=2012 và

y2=36-32=4.Suy ra y=2

Vậy ta có các cặp (x;y) thuộc N sau

(2010;6) ; (2012;2)

19 tháng 2 2019
https://i.imgur.com/G028SlE.jpg
14 tháng 3 2018

TA CÓ: \(\frac{x}{2009}=\frac{y}{2010}=\frac{z}{2011}=k\)

\(\Rightarrow\frac{x}{2009}=k\Rightarrow x=2009k\)

\(\frac{y}{2010}=k\Rightarrow y=2010k\)

\(\frac{z}{2011}=k\Rightarrow z=2011k\)

thay vào \(\left(x-z\right)^3=\left(2009k-2011k\right)^3=\left(k.\left(2009-2011\right)\right)^3=\left(k.\left(-2\right)\right)^3=k^3\left(-2\right)^3=k^3.\left(-8\right)\)

\(8\left(x-y\right)^2\left(y-z\right)=8\left(2009k-2010k\right)^2\left(2010k-2011k\right)=8\left(-k\right)^2\left(-k\right)=\left(-8\right)k^3\)

\(\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(=k\left(-8\right)\right)\)  ( đ p c m)

CHÚC BN HỌC TỐT!!!

21 tháng 3 2017

a.2010-|x-2010|=x

=>| x-2010|=2010-x

Ta có: | x- 2010 |= x-2010 hoặc |x-2010|= -(x-2010)

TH1: | x-2010|= x-2010

=>x-2010= 2010 - x

=> x+x= 2010+2010

=> 2x = 4020

=> x = 2010.

TH2: | x-2010|=-( x- 2010)

=> -x+2010= 2010-x

=>-x+x=2010-2010

=> 0=0(luôn đúng).

=>x=0

Vậy x= 2010 hoặc x=0

b. Ta có: \(\left(2x-1\right)^{2010}\) \(\ge0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}\ge0\)

\(\left|x+y-z\right|\ge0\)

=> Để biểu thức trên xảy ra =>\(\left(2x-1\right)^{2010}=0\)

\(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

\(\left|x+y-z\right|=0\)

* Với \(\left(2x-1\right)^{2010}=0\)

=> 2x -1 =0

=> 2x = 1

=> x= \(\dfrac{1}{2}\)

*Với \(\left(y-\dfrac{2}{5}\right)^{2010}=0\)

=> \(y-\dfrac{2}{5}=0\)

=> y= \(\dfrac{2}{5}\)

* Với \(\left|x+y-z\right|=0\)

=> x+y-z=0

=> \(\dfrac{1}{2}+\dfrac{2}{5}-z=0\)

=> \(\dfrac{9}{10}-z=0\)

=> \(z=\dfrac{9}{10}\)

Vậy \(x=\dfrac{1}{2}\); \(y=\dfrac{2}{5}\); \(z=\dfrac{9}{10}\)

21 tháng 3 2017

nè,câu a mình làm có đúng k các bạn?lolang

2 tháng 9 2023

Ta có: \(y^2\ge0\forall y\in Z\)

\(\Rightarrow-y^2\le0\forall y\in Z\)

\(\Rightarrow36-y^2\le36\forall y\in Z\)

mà \(36-y^2=8\left(x-2010\right)^2\) (*)

nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)

Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\)   (1)

Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)

Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:

\(36-y^2=0\)

\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)

+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\)

\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)

+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)

\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)

Vậy ...