Giải pt
\(\sqrt{x+2}+x=4\)
\(\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\sqrt{x^2}=x\)
\(\Leftrightarrow\left|x\right|=x\)
hay \(x\ge0\)
b: Ta có: \(\sqrt{x^2-4x+4}=x-2\)
\(\Leftrightarrow\left|x-2\right|=x-2\)
\(\Leftrightarrow x\ge2\)
\(\sqrt{x^2}=x\Leftrightarrow\left|x\right|=x\Leftrightarrow x\ge0\)
\(\sqrt{x^2-4x+4}=x-2\left(x\in R\right)\\ \Leftrightarrow\left|x-2\right|=x-2\\ \Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
\(ĐK:x\in R\)
\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)
Đặt \(x^2+x+1=a;a\ge0\)
\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)
(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)
\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)
\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)
\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)
\(\Leftrightarrow a\left(a+3\right)=4\)
\(\Leftrightarrow a^2+3a-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)
Vậy \(S=\left\{0;-1\right\}\)
Chỗ Bunyakovsky mình sửa lại 1 chút:
\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\) \(\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{4-x}\right)^2\right]\)
\(=2\left(x-2+4-x\right)\) \(=4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)
Hơn nữa \(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
Từ đó dấu "=" phải xảy ra ở cả 2 BĐT trên, tức là:
\(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{4-x}\\x-3=0\end{matrix}\right.\Leftrightarrow x=3\)
Vậy pt đã cho có nghiệm duy nhất \(x=3\)
Đính chính
...Áp dụng bất đẳng thức Bunhiacopxki ta có :
\(\left(1.\sqrt[]{x-2}+1.\sqrt[]{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)=2.2=4\)
\(\Rightarrow\sqrt[]{x-2}+\sqrt[]{4-x}\le2\)
mà \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
\(pt\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt[]{x-2}}=\dfrac{1}{\sqrt[]{4-x}}\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=4-x\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x=3\end{matrix}\right.\) \(\Leftrightarrow x=3\)
Vậy \(x=3\) là nghiệm của pt (1)
\(\sqrt{x+2}+x=4\)
\(\text{Đ}K\text{X}\text{Đ}\)\(:\) \(x\ge-2\)
\(\sqrt{x+2}=4-x\)
\(\Leftrightarrow\hept{\begin{cases}4-x\ge0\\x+2=\left(4-x\right)^2\end{cases}}\)
\(\Leftrightarrow x=2\)
................
ĐK: \(-2\le x\le4\)
\(\sqrt{x+2}+x=4\)
\(\Leftrightarrow\)\(\sqrt{x+2}=4-x\)
\(\Leftrightarrow\)\(x+2=16-8x+x^2\)
\(\Leftrightarrow\)\(x^2-9x+14=0\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\left(t/m\right)\\x=7\left(L\right)\end{cases}}\)
Vậy....